Abstract:
Due to their extraordinary electronic and chemical properties, ligand-centered radical complexes are of particular interest in the development of novel materials such as catalysts[1] and NIR chromophores[2] and in the elucidation of biological processes[3]. In the class of non-innocent ligand complexes sulfur-centered radical complexes are of special interest. Due to the strong admixture of sulfur to the metal orbitals in the case of transition metals[4] and due to its weak +M effect[5] in thiolates, the boundary between ligand and metal-centered radicals in oxidized bisdithiolate systems becomes blurred. This makes them excellent systems for investigating the metal-ligand interaction. The interaction can be influenced by the geometry as well as by the electronic structure. Unfortunately, the amount of such isolated and crystallographically investigated thiyl/thiolate complexes is small.[6] Due to the cis-dithiolate ligand used, the complexes are both limited in their geometric arrangementand highly symmetrical, so that the geometric parameter is difficult to investigate. In this work, 1,4 terphenyldithiophenolate ligands were used to achieve and isolate for the first time a pure trans position of the thiolates in a cationic radical complex of group 10 metals. The used ligand offers a flexible third coordination site by the bridging system of the terphenyl unit. The binding to the π-system can be controlled by the number of co-ligands and thus indirectly influences the geometric position of the metal coordination sphere. Due to the variation of the metal, the tilting of the metal coordination plane and the steric interaction between main and co-ligand, it is now possible to investigate the interaction between geometric and electronic parameters and their effects on the metal-ligand interaction. In particular, the NIR absorption band has shown that the electronic properties of the system can be strongly influenced by even the smallest geometric changes and that the electronic structure of the metal plays a decisive role in the development of these properties. Through this work, it is now possible to better estimate the influence of steric and electronic factors and their interaction on the properties of radical complexes. This contributes to the understanding of catalytic systems in nature and in industry.