Abstract:
Until recently, it was widely accepted that melanogenesis does not occur in the adult retinal pigment epithelium (RPE), since the typical hallmarks of melanogenesis, the premelanosome and the expression of melanogenic proteins like tyrosinase and melanocyte-associated protein 17 (PMEL17), were absent post-natal. In the meantime, active tyrosinase has been observed in the adult RPE of different animal species, e.g. after phagocytosis of retinal photoreceptor outer segments (ROS). The aim of this thesis was to investigate whether melanogenesis can be induced in adult human RPE cells in response to ROS phagocytosis or after transduction with a tyrosinase vector. The role of the melanogenic proteins PMEL17 and TRP1 and the classical melanosomal stages, known from pre-natal melanin synthesis, were also to determine.
As a model system tyrosinase transduced amelanotic RPE cells were used to study tyrosinase function and melanogenesis and the influence of phagocytosis in adult RPE. The presences of the melanogenic proteins tyrosinase, tyrosinase-related protein 1 (TRP1) and PMEL17 were investigated using immunocytochemistry. Tyrosinase activity and loclisation was further studied with electron microscopical DOPA histochemistry. The ultrastructural morphology of melanogenic stages was compared to that of pigmented melanoma cells (MNT-1), which were used as a positive control for typical melanogenesis. Melanin synthesis was detected with HPLC analysis. MTT tests confirmed that viability was not affected after tyrosinase transduction and melanin synthesis. Post-natal RPE melanogenesis was also studied in animal experiments after subretinal injection of the tyrosinase vector in rats and rabbits.
Compared to controls, tyrosinase active cells had a redifferentiated cobblestone morphology, were pigmented and had an improved phagocytosis rate. Tyrosinase trafficking was different to the classical model found in MNT-1 cells, since a DOPA reaction was not observed in Golgi-derived vesicles, but as membrane-less, small DOPA granules free-floating in the cytoplasm. Melanogenesis occurred without the involvement of TRP1, PMEL17 and typical striated premelanosomes and melanogenic stages. In contrast, melanin was synthesised in lysosome-like organelles. Thus, a new pathway of melanogenesis is described for this model system. Transduced RPE cells of living rats and rabbits and cultured cells of human donors showed also a similar morphology of melanogenesis as the ARPE-19 cells. Interestingly, control MNT-1 cells contained similar melanosomes in addition to the classical stages of melanogenesis.
Although a transport of ingested material to newly-formed ARPE-19 melanosomes was not observed, phagocytosis led to an improved tyrosinase activity and to an accelerated melanogenesis, compared to non-fed transduced cells.
In conclusion, tyrosinase transduction in combination with phagocytosis led to a morphological reorganisation and functional improvement of cultured ARPE-19 cells. Additionally, melanogenesis has been induced, which is independent of premelanosome formation. It can be transferred to the in vivo situation by gene therapy.