Carbon in the earth's mantle: solubility and speciation in major nominally volatile-free mantle minerals

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Keppler, Hans de_DE
dc.contributor.author Shcheka, Svyatoslav de_DE
dc.date.accessioned 2006-05-29 de_DE
dc.date.accessioned 2014-03-18T10:15:27Z
dc.date.available 2006-05-29 de_DE
dc.date.available 2014-03-18T10:15:27Z
dc.date.issued 2006 de_DE
dc.identifier.other 275777189 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-22222 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48891
dc.description.abstract (1) Carbon solubility in upper mantle minerals The solubility of carbon in forsterite, enstatite, diopside, pyrope and MgAl2O4 spinel has been quantified. Previously reported problems of contamination and slow diffusion of carbon in minerals have been overcome by (1) growing carbon-saturated crystals from carbonatite melts in piston-cylinder (T=900-1100 °C; P=1.5 GPa) and multianvil (T=900-1400 °C; P=6-11 GPa) experiments in the presence of ~1 wt.% water and by (2) using starting materials, isotopically enriched to contain ~99 wt.% of 13C. Secondary ion mass spectrometry (SIMS) was employed to measure the carbon contents of the synthesized minerals. Carbon solubility in silicates at uppermost mantle conditions is exceedingly low, in the order of a few hundred parts per billion by weight. Solubility increases exponentially as a function of pressure to a maximum of ~12 ppm by weight in forsterite at 11 GPa and 1200 °C. No clear dependence of carbon solubility on temperature, oxygen fugacity and iron content was observed. Carbon solubility in MgAl2O4 spinel is below the limit of detection of the analytical technique used (i.e., below 30 ppb by weight). (2) Carbon solubility in minerals of the transition zone and lower mantle A similar technique was used to obtain the first experimental data on carbon solubility in wadsleyite, ringwoodite, MgSiO3-ilmenite and MgSiO3-perovskite. Experiments were performed in a multianvil press (T=1200-1400 °C; P=16-26 GPa). All high-pressure minerals show no excess of the 13C isotope relatively to the natural ratio of 13C/12C. The maximum carbon solubility in wadsleyite, ringwoodite, MgSiO3-ilmenite and MgSiO3-perovskite is therefore below the limit of detection of 40-110 ppb by weight. (3) Carbon speciation in mantle silicates The observation that carbon solubility in olivine is insensitive to oxygen fugacity implies that the oxidation state of carbon in the carbonatite melt and in olivine is the same, i.e. carbon dissolves as C4+ in olivine. The differences in carbon solubilities between the various minerals studied appear to correlate with the polyhedral volume of the Si4+ site, consistent with a direct substitution of C4+ for Si4+. The larger size of the Si4+ site in minerals of the transition zone and lower mantle and the absence of appropriate polyhedra in MgAl2O4 spinel prohibit the incorporation of carbon. (4) Geological implications The exceedingly low solubility of carbon in major nominally volatile-free mantle minerals implies that the carbon budget of the bulk mantle is dominated by minor carbon-rich phases (e.g. carbonates, diamonds). This is consistent with the possibility of massive carbon enrichment in the shallow mantle. Such carbon-rich reservoirs could be tapped during large volcanic eruptions which may trigger mass extinctions in the biosphere. en
dc.description.abstract 1. Kohlenstofflöslichkeit in Mineralen des oberen Erdmantels Die Löslichkeit von Kohlenstoff in Forsterit, Enstatit, Diopsid und MgAl2O4-Spinell wurde gemessen. Kohlenstoff-gesättigte Kristalle dieser Minerale wurde aus einer Karbonatitschmelze mit ca. 1 Gew% Wasser auskristallisiert. Für die Experimente wurden eine Piston-Zylinder Apparatur (T =900-1100 °C; P = 1.5 GPa) und eine Multi-Anvil-Presse (T = 900-1400 °C; P = 6-11 GPa) eingesetzt. Der Kohlenstoff im Ausgangsmaterial bestand zu etwa 99 % aus dem Isotop 13C. Durch die Verwendung dieses seltenen Isotops kann der in der Probe gelöste Kohlenstoff eindeutig von Kontaminationen durch isotopisch normalen Kohlenstoff unterschieden werden. Der Kohlenstoffgehalt der synthetisierten Minerale wurde mit Sekundär-Ionen-Massen-Spektrometrie (SIMS) gemessen. Die Löslichkeit von Kohlenstoff in Silikaten unter den Bedingungen des oberen Erdmantels ist außerordentlich gering. Sie beträgt im Forsterit im obersten Mantel nur einige hundert ppb und steigt als eine Funktion des Druckes bis auf ~12 ppm an (11 GPa und 1200°C). Es wurde keine klare Abhängigkeit der Kohlenstofflöslichkeit von der Temperatur, der Sauerstofffugazität und dem Eisengehalt beobachtet. Im Spinell liegt sich die Löslichkeit von Kohlenstoff unterhalb der Nachweisgrenze von weniger als 30 ppb. 2. Kohlenstofflöslichkeit in Mineralen der Übergangszone und des unteren Erdmantels Die Experimente zur Kohlenstofflöslichkeit in Wadsleyit, Ringwoodit, MgSiO3-Ilmenit und MgSiO3-Perovskit wurden mit einer Multi-Anvil-Presse (T = 1200-1400 °C; P = 16-26 GPa) durchgeführt. Hierbei wurden ähnliche experimentelle Methoden eingesetzt wie oben beschrieben. Alle synthetisierten Minerale zeigen keinen Überschuß an 13C relativ zum natürlichen 13C/12C Verhältnis. Die maximale Kohlenstofflöslichkeit in Wadsleyit, Ringwoodit, MgSiO3-Ilmentit und MgSiO3-Perovskit liegt daher unterhalb der Nachweisgrenze von 40-110 ppb. 3. Kohlenstoff-Speziation in Mantelsilikaten Da die Kohlenstofflöslichkeit in Olivin unabhängig von der Sauerstoff-Fugazität ist, muß der Oxydationszustand von Kohlenstoff in der Karbonatitschmelze und im Olivin gleich sein, d.h. Kohlenstoff wird im Olivin als C4+gelöst. Die Kohlenstofflöslichkeiten in den verschiedenen Mineralen korrelieren mit dem Volumen des Si4+-Gitterplatzes, wie bei einem direkten Ersatz von C4+ für Si4+ zu erwarten. Das große Volumen des Si4+-Gitterplatzes in den Mineralen der Übergangszone und des unteren Mantels und die Abwesenheit eines geeigneten Gitterplatzes im MgAl2O4-Spinell erklären die verschwindend geringe Kohlenstoff-Löslichkeit in diesen Phasen. 4. Geologische Anwendungen Die außerordentlich niedrige Löslichkeit von Kohlenstoff in den gesteinsbildenden Mineralen des Erdmantels deutet darauf hin, dass das Kohlenstoff-Budget des Mantels durch geringe Mengen an kohlenstoff-reichen Phasen (z.B Karbonate, Diamant) dominiert wird. Damit sind massive Anreicherungen von Kohlenstoff im flachen subkontinentalen Mantel möglich. Kontinentale Flutbasalt-Eruptionen könnten möglicherweise zur schnellen Freisetzung extrem großer Mengen von Kohlendioxid aus diesen Reservoiren führen und damit globale Aussterbeereignisse verursachen. de_DE
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Olivin , Erdmantel , Karbon , Carbonate de_DE
dc.subject.ddc 550 de_DE
dc.subject.other carbon , carbon dioxide , carbonates , mantle en
dc.title Carbon in the earth's mantle: solubility and speciation in major nominally volatile-free mantle minerals en
dc.title Kohlenstoff im Erdmantel: Löslichkeit und Speziation in nominell volatil-freien Mantelmineralen de_DE
dc.type PhDThesis de_DE
dcterms.dateAccepted 2006-02-08 de_DE
utue.publikation.fachbereich Sonstige - Geowissenschaften de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ doctoralThesis de_DE
utue.opus.id 2222 de_DE
thesis.grantor 16 Geowissenschaftliche Fakultät de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige