dc.contributor.advisor |
Niedermeier, Rolf |
de_DE |
dc.contributor.author |
Gramm, Jens |
de_DE |
dc.date.accessioned |
2003-09-23 |
de_DE |
dc.date.accessioned |
2014-03-18T10:11:39Z |
|
dc.date.available |
2003-09-23 |
de_DE |
dc.date.available |
2014-03-18T10:11:39Z |
|
dc.date.issued |
2003 |
de_DE |
dc.identifier.other |
107331128 |
de_DE |
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-9120 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/48503 |
|
dc.description.abstract |
Fixed-parameter algorithms offer a constructive and powerful approach
to efficiently obtain solutions for NP-hard problems combining two
important goals: Fixed-parameter algorithms compute optimal solutions
within provable time bounds despite the (almost inevitable)
computational intractability of NP-hard problems. The essential idea
is to identify one or more aspects of the input to a problem as the
parameters, and to confine the combinatorial explosion of
computational difficulty to a function of the parameters such that the
costs are polynomial in the non-parameterized part of the input. This
makes especially sense for parameters which have small values in
applications. Fixed-parameter algorithms have become an established
algorithmic tool in a variety of application areas, among them
computational biology where small values for problem parameters are
often observed. A number of design techniques for fixed-parameter
algorithms have been proposed and bounded search trees are one of
them. In computational biology, however, examples of bounded search
tree algorithms have been, so far, rare.
This thesis investigates the use of bounded search tree algorithms for
consensus problems in the analysis of DNA and RNA data. More
precisely, we investigate consensus problems in the contexts of
sequence analysis, of quartet methods for phylogenetic reconstruction,
of gene order analysis, and of RNA secondary structure comparison. In
all cases, we present new efficient algorithms that incorporate the
bounded search tree paradigm in novel ways. On our way, we also obtain
results of parameterized hardness, showing that the respective
problems are unlikely to allow for a fixed-parameter algorithm, and we
introduce integer linear programs (ILP's) as a tool for classifying
problems as fixed-parameter tractable, i.e., as having fixed-parameter
algorithms. Most of our algorithms were implemented and tested on
practical data. |
en |
dc.description.abstract |
Festparameter-Algorithmen bieten einen konstruktiven Ansatz zur
Loesung von kombinatorisch schwierigen, in der Regel NP-harten
Problemen, der zwei Ziele beruecksichtigt: innerhalb von beweisbaren
Laufzeitschranken werden optimale Ergebnisse berechnet. Die
entscheidende Idee ist dabei, einen oder mehrere Aspekte der
Problemeingabe als Parameter der Problems aufzufassen und die
kombinatorische Explosion der algorithmischen Schwierigkeit auf diese
Parameter zu beschraenken, so dass die Laufzeitkosten polynomiell in
Bezug auf den nicht-parametrisierten Teil der Eingabe sind. Gibt es
einen Festparameter-Algorithmus fuer ein kombinatorisches Problem,
nennt man das Problem festparameter-handhabbar. Die Entwicklung von
Festparameter-Algorithmen macht vor allem dann Sinn, wenn die
betrachteten Parameter im Anwendungsfall nur kleine Werte
annehmen. Festparameter-Algorithmen sind zu einem algorithmischen
Standardwerkzeug in vielen Anwendungsbereichen geworden, unter anderem
in der algorithmischen Biologie, wo in vielen Anwendungen kleine
Parameterwerte beobachtet werden koennen. Zu den bekannten Techniken
fuer den Entwurf von Festparameter-Algorithmen gehoeren unter anderem
groessenbeschraenkte Suchbaeume. In der algorithmischen Biologie gibt
es bislang nur wenige Beispiele fuer die Anwendung von
groessenbeschraenkten Suchbaeumen.
Diese Arbeit untersucht den Einsatz groessenbeschraenkter Suchbaeume
fuer NP-harte Konsens-Probleme in der Analyse von DNS- und
RNS-Daten. Wir betrachten Konsens-Probleme in der Analyse von
DNS-Sequenzdaten, in der Analyse von sogenannten Quartettdaten zur
Erstellung von phylogenetischen Hypothesen, in der Analyse von Daten
ueber die Anordnung von Genen und beim Vergleich von
RNS-Strukturdaten. In allen Faellen stellen wir neue effiziente
Algorithmen vor, in denen das Paradigma der groessenbeschraenkten
Suchbaeume auf neuartige Weise realisiert wird. Auf diesem Weg zeigen
wir auch Ergebnisse parametrisierter Haerte, die zeigen, dass fuer
die dabei betrachteten Probleme ein Festparameter-Algorithmus
unwahrscheinlich ist. Ausserdem fuehren wir ganzzahliges lineares
Programmieren als eine neue Technik ein, um die
Festparameter-Handhabbarkeit eines Problems zu zeigen. Die Mehrzahl
der hier vorgestellten Algorithmen wurde implementiert und auf
Anwendungsdaten getestet. |
de_DE |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Algorithmentheorie , Berechnungskomplexität , Bioinformatik |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.subject.other |
Festparameteralgorithmen , Algorithmische Biologie , Konsensanalyse, NP-harte Probleme , Exakte Loesungen |
de_DE |
dc.subject.other |
fixed-parameter algorithms , computational biology , consensus analysis , NP-hard problems , exact solutions |
en |
dc.title |
Fixed-Parameter Algorithms for the Consensus Analysis of Genomic Data |
en |
dc.title |
Fixed-Parameter Algorithms for the Consensus Analysis of Genomic Data |
de_DE |
dc.title |
Festparameter-Algorithmen fuer die Konsens-Analyse Genomischer Daten |
de_DE |
dc.type |
PhDThesis |
de_DE |
dcterms.dateAccepted |
2003-07-23 |
de_DE |
utue.publikation.fachbereich |
Sonstige - Informations- und Kognitionswissenschaften |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
dcterms.DCMIType |
Text |
de_DE |
utue.publikation.typ |
doctoralThesis |
de_DE |
utue.opus.id |
912 |
de_DE |
thesis.grantor |
17 Fakultät für Informations- und Kognitionswissenschaften |
de_DE |