Fixed-Parameter Algorithms for the Consensus Analysis of Genomic Data

DSpace Repository


Dateien:

URI: http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-9120
http://hdl.handle.net/10900/48503
Dokumentart: PhDThesis
Date: 2003
Language: English
Faculty: 7 Mathematisch-Naturwissenschaftliche Fakultät
Department: Sonstige - Informations- und Kognitionswissenschaften
Advisor: Niedermeier, Rolf
Day of Oral Examination: 2003-07-23
DDC Classifikation: 004 - Data processing and computer science
Keywords: Algorithmentheorie , Berechnungskomplexität , Bioinformatik
Other Keywords: Festparameteralgorithmen , Algorithmische Biologie , Konsensanalyse, NP-harte Probleme , Exakte Loesungen
fixed-parameter algorithms , computational biology , consensus analysis , NP-hard problems , exact solutions
License: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Order a printed copy: Print-on-Demand
Show full item record

Inhaltszusammenfassung:

Festparameter-Algorithmen bieten einen konstruktiven Ansatz zur Loesung von kombinatorisch schwierigen, in der Regel NP-harten Problemen, der zwei Ziele beruecksichtigt: innerhalb von beweisbaren Laufzeitschranken werden optimale Ergebnisse berechnet. Die entscheidende Idee ist dabei, einen oder mehrere Aspekte der Problemeingabe als Parameter der Problems aufzufassen und die kombinatorische Explosion der algorithmischen Schwierigkeit auf diese Parameter zu beschraenken, so dass die Laufzeitkosten polynomiell in Bezug auf den nicht-parametrisierten Teil der Eingabe sind. Gibt es einen Festparameter-Algorithmus fuer ein kombinatorisches Problem, nennt man das Problem festparameter-handhabbar. Die Entwicklung von Festparameter-Algorithmen macht vor allem dann Sinn, wenn die betrachteten Parameter im Anwendungsfall nur kleine Werte annehmen. Festparameter-Algorithmen sind zu einem algorithmischen Standardwerkzeug in vielen Anwendungsbereichen geworden, unter anderem in der algorithmischen Biologie, wo in vielen Anwendungen kleine Parameterwerte beobachtet werden koennen. Zu den bekannten Techniken fuer den Entwurf von Festparameter-Algorithmen gehoeren unter anderem groessenbeschraenkte Suchbaeume. In der algorithmischen Biologie gibt es bislang nur wenige Beispiele fuer die Anwendung von groessenbeschraenkten Suchbaeumen. Diese Arbeit untersucht den Einsatz groessenbeschraenkter Suchbaeume fuer NP-harte Konsens-Probleme in der Analyse von DNS- und RNS-Daten. Wir betrachten Konsens-Probleme in der Analyse von DNS-Sequenzdaten, in der Analyse von sogenannten Quartettdaten zur Erstellung von phylogenetischen Hypothesen, in der Analyse von Daten ueber die Anordnung von Genen und beim Vergleich von RNS-Strukturdaten. In allen Faellen stellen wir neue effiziente Algorithmen vor, in denen das Paradigma der groessenbeschraenkten Suchbaeume auf neuartige Weise realisiert wird. Auf diesem Weg zeigen wir auch Ergebnisse parametrisierter Haerte, die zeigen, dass fuer die dabei betrachteten Probleme ein Festparameter-Algorithmus unwahrscheinlich ist. Ausserdem fuehren wir ganzzahliges lineares Programmieren als eine neue Technik ein, um die Festparameter-Handhabbarkeit eines Problems zu zeigen. Die Mehrzahl der hier vorgestellten Algorithmen wurde implementiert und auf Anwendungsdaten getestet.

Abstract:

Fixed-parameter algorithms offer a constructive and powerful approach to efficiently obtain solutions for NP-hard problems combining two important goals: Fixed-parameter algorithms compute optimal solutions within provable time bounds despite the (almost inevitable) computational intractability of NP-hard problems. The essential idea is to identify one or more aspects of the input to a problem as the parameters, and to confine the combinatorial explosion of computational difficulty to a function of the parameters such that the costs are polynomial in the non-parameterized part of the input. This makes especially sense for parameters which have small values in applications. Fixed-parameter algorithms have become an established algorithmic tool in a variety of application areas, among them computational biology where small values for problem parameters are often observed. A number of design techniques for fixed-parameter algorithms have been proposed and bounded search trees are one of them. In computational biology, however, examples of bounded search tree algorithms have been, so far, rare. This thesis investigates the use of bounded search tree algorithms for consensus problems in the analysis of DNA and RNA data. More precisely, we investigate consensus problems in the contexts of sequence analysis, of quartet methods for phylogenetic reconstruction, of gene order analysis, and of RNA secondary structure comparison. In all cases, we present new efficient algorithms that incorporate the bounded search tree paradigm in novel ways. On our way, we also obtain results of parameterized hardness, showing that the respective problems are unlikely to allow for a fixed-parameter algorithm, and we introduce integer linear programs (ILP's) as a tool for classifying problems as fixed-parameter tractable, i.e., as having fixed-parameter algorithms. Most of our algorithms were implemented and tested on practical data.

This item appears in the following Collection(s)