dc.contributor.advisor |
Leeb, Bernhard |
de_DE |
dc.contributor.author |
Weiß, Hartmut |
de_DE |
dc.date.accessioned |
2002-12-20 |
de_DE |
dc.date.accessioned |
2014-03-18T10:10:54Z |
|
dc.date.available |
2002-12-20 |
de_DE |
dc.date.available |
2014-03-18T10:10:54Z |
|
dc.date.issued |
2002 |
de_DE |
dc.identifier.other |
104056452 |
de_DE |
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-6662 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/48427 |
|
dc.description.abstract |
We investigate local rigidity of 3-dimensional cone-manifolds with cone-angles not larger than $pi$. Under this cone-angle restriction the singular locus is a trivalent graph. We obtain local rigidity in the hyperbolic and the spherical case. From a technical point of view the main result is a vanishing theorem for $L^2$-cohomology of the smooth part of the cone-manifold with coefficients in the flat vectorbundle of infinitesimal isometries. From this local rigidity is deduced by an analysis of the variety of representations. |
de_DE |
dc.description.abstract |
We investigate local rigidity of 3-dimensional cone-manifolds with cone-angles not larger than $pi$. Under this cone-angle restriction the singular locus is a trivalent graph. We obtain local rigidity in the hyperbolic and the spherical case. From a technical point of view the main result is a vanishing theorem for $L^2$-cohomology of the smooth part of the cone-manifold with coefficients in the flat vectorbundle of infinitesimal isometries. From this local rigidity is deduced by an analysis of the variety of representations. |
en |
dc.language.iso |
de |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Niederdimensionale Topologie , Mannigfaltigkeit / Dimension 3 , Einsteinsche Mannigfaltigkeit , Hyperbolische Mannigfaltigkeit |
de_DE |
dc.subject.ddc |
510 |
de_DE |
dc.subject.other |
Geometrisierung von 3-Mannigfaltigkeiten , Deformationen von Kegelmannigfaltigkeitsstrukturen |
de_DE |
dc.subject.other |
Geometric topology , Geometrization of 3-manifolds , Deformations of cone-manifold structures |
en |
dc.title |
Lokale Starrheit 3-dimensionaler Kegelmannigfaltigkeiten |
de_DE |
dc.title |
Local rigidity of 3-dimensional cone-manifolds |
en |
dc.type |
PhDThesis |
de_DE |
dc.date.updated |
2002-12-20 |
de_DE |
dcterms.dateAccepted |
2002-12-19 |
de_DE |
utue.publikation.fachbereich |
Sonstige - Mathematik und Physik |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
dcterms.DCMIType |
Text |
de_DE |
utue.publikation.typ |
doctoralThesis |
de_DE |
utue.opus.id |
666 |
de_DE |
thesis.grantor |
12/13 Fakultät für Mathematik und Physik |
de_DE |