Lokale Starrheit 3-dimensionaler Kegelmannigfaltigkeiten

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Leeb, Bernhard de_DE
dc.contributor.author Weiß, Hartmut de_DE
dc.date.accessioned 2002-12-20 de_DE
dc.date.accessioned 2014-03-18T10:10:54Z
dc.date.available 2002-12-20 de_DE
dc.date.available 2014-03-18T10:10:54Z
dc.date.issued 2002 de_DE
dc.identifier.other 104056452 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-6662 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48427
dc.description.abstract We investigate local rigidity of 3-dimensional cone-manifolds with cone-angles not larger than $pi$. Under this cone-angle restriction the singular locus is a trivalent graph. We obtain local rigidity in the hyperbolic and the spherical case. From a technical point of view the main result is a vanishing theorem for $L^2$-cohomology of the smooth part of the cone-manifold with coefficients in the flat vectorbundle of infinitesimal isometries. From this local rigidity is deduced by an analysis of the variety of representations. de_DE
dc.description.abstract We investigate local rigidity of 3-dimensional cone-manifolds with cone-angles not larger than $pi$. Under this cone-angle restriction the singular locus is a trivalent graph. We obtain local rigidity in the hyperbolic and the spherical case. From a technical point of view the main result is a vanishing theorem for $L^2$-cohomology of the smooth part of the cone-manifold with coefficients in the flat vectorbundle of infinitesimal isometries. From this local rigidity is deduced by an analysis of the variety of representations. en
dc.language.iso de de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Niederdimensionale Topologie , Mannigfaltigkeit / Dimension 3 , Einsteinsche Mannigfaltigkeit , Hyperbolische Mannigfaltigkeit de_DE
dc.subject.ddc 510 de_DE
dc.subject.other Geometrisierung von 3-Mannigfaltigkeiten , Deformationen von Kegelmannigfaltigkeitsstrukturen de_DE
dc.subject.other Geometric topology , Geometrization of 3-manifolds , Deformations of cone-manifold structures en
dc.title Lokale Starrheit 3-dimensionaler Kegelmannigfaltigkeiten de_DE
dc.title Local rigidity of 3-dimensional cone-manifolds en
dc.type PhDThesis de_DE
dc.date.updated 2002-12-20 de_DE
dcterms.dateAccepted 2002-12-19 de_DE
utue.publikation.fachbereich Sonstige - Mathematik und Physik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ doctoralThesis de_DE
utue.opus.id 666 de_DE
thesis.grantor 12/13 Fakultät für Mathematik und Physik de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige