Lokale Starrheit 3-dimensionaler Kegelmannigfaltigkeiten

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-6662
http://hdl.handle.net/10900/48427
Dokumentart: Dissertation
Erscheinungsdatum: 2002
Sprache: Deutsch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Sonstige - Mathematik und Physik
Gutachter: Leeb, Bernhard
Tag der mündl. Prüfung: 2002-12-19
DDC-Klassifikation: 510 - Mathematik
Schlagworte: Niederdimensionale Topologie , Mannigfaltigkeit / Dimension 3 , Einsteinsche Mannigfaltigkeit , Hyperbolische Mannigfaltigkeit
Freie Schlagwörter: Geometrisierung von 3-Mannigfaltigkeiten , Deformationen von Kegelmannigfaltigkeitsstrukturen
Geometric topology , Geometrization of 3-manifolds , Deformations of cone-manifold structures
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Gedruckte Kopie bestellen: Print-on-Demand
Zur Langanzeige

Inhaltszusammenfassung:

We investigate local rigidity of 3-dimensional cone-manifolds with cone-angles not larger than $pi$. Under this cone-angle restriction the singular locus is a trivalent graph. We obtain local rigidity in the hyperbolic and the spherical case. From a technical point of view the main result is a vanishing theorem for $L^2$-cohomology of the smooth part of the cone-manifold with coefficients in the flat vectorbundle of infinitesimal isometries. From this local rigidity is deduced by an analysis of the variety of representations.

Abstract:

We investigate local rigidity of 3-dimensional cone-manifolds with cone-angles not larger than $pi$. Under this cone-angle restriction the singular locus is a trivalent graph. We obtain local rigidity in the hyperbolic and the spherical case. From a technical point of view the main result is a vanishing theorem for $L^2$-cohomology of the smooth part of the cone-manifold with coefficients in the flat vectorbundle of infinitesimal isometries. From this local rigidity is deduced by an analysis of the variety of representations.

Das Dokument erscheint in: