dc.contributor.advisor |
Yserentant, Harry |
de_DE |
dc.contributor.author |
Gradinaru, Vasile Catrinel |
de_DE |
dc.date.accessioned |
2002-07-22 |
de_DE |
dc.date.accessioned |
2014-03-18T10:10:11Z |
|
dc.date.available |
2002-07-22 |
de_DE |
dc.date.available |
2014-03-18T10:10:11Z |
|
dc.date.issued |
2002 |
de_DE |
dc.identifier.other |
100285856 |
de_DE |
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-5436 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/48372 |
|
dc.description.abstract |
Da sich bei einigen Betriebssystemen die PDF-Datei nicht öffnen ließ, wurde eine weitere - technisch überarbeitete PDF-Datei - ergänzt. |
de_DE |
dc.description.abstract |
This work generalize the idea of the discretizations on sparse grids to
differential forms. The extension to general l-forms in d dimensions
includes the well known Whitney elements, as well as H(div)- and H(curl)-
conforming mixed finite elements.
The construction is based on one-dimensional
differential forms, related wavelet representations and their tensor products.
In addition to the construction of spaces, interpolation estimates are given.
They display the typical efficiency of approximations based on sparse grids.
Discrete inf-sup conditions are shown theoreticaly and experimentaly for mixed
second order problems. The focus is on the stability of the discretization
of the primal and of the dual mixed problem by sparse grid Whitney forms.
The explanation of the involved algorithms received a particular attention,
filling a gap in the literature. Details on the multilevel transforms,
approximate interpolation operators, mass and stiffness matrix multiplications
are given. The construction of general stencils on anisotropic full grids
completes the detailed description of the multigrid solver based on semicoarsening. |
en |
dc.language.iso |
de |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Numerische Mathematik , Elektrodynamik , Finite-Elemente-Methode , Dünnes Gitter , Anisotropes Gitter |
de_DE |
dc.subject.ddc |
510 |
de_DE |
dc.subject.other |
Whitney-Elemente , Mehrgitterverfahren , Wirbelstromprobleme , Algorithmen für Dünne Gitter |
de_DE |
dc.subject.other |
Whitney forms , multilevel methods , multigrid , eddy currents , edge elements |
en |
dc.title |
Whitney Elemente auf dünnen Gittern |
de_DE |
dc.title |
Whitney Elements on Sparse Grids |
en |
dc.type |
PhDThesis |
de_DE |
dc.date.updated |
1970-01-01 |
de_DE |
dcterms.dateAccepted |
2002-07-12 |
de_DE |
utue.publikation.fachbereich |
Sonstige - Mathematik und Physik |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
dcterms.DCMIType |
Text |
de_DE |
utue.publikation.typ |
doctoralThesis |
de_DE |
utue.opus.id |
543 |
de_DE |
thesis.grantor |
12/13 Fakultät für Mathematik und Physik |
de_DE |