Whitney Elemente auf dünnen Gittern

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Yserentant, Harry de_DE
dc.contributor.author Gradinaru, Vasile Catrinel de_DE
dc.date.accessioned 2002-07-22 de_DE
dc.date.accessioned 2014-03-18T10:10:11Z
dc.date.available 2002-07-22 de_DE
dc.date.available 2014-03-18T10:10:11Z
dc.date.issued 2002 de_DE
dc.identifier.other 100285856 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-5436 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48372
dc.description.abstract Da sich bei einigen Betriebssystemen die PDF-Datei nicht öffnen ließ, wurde eine weitere - technisch überarbeitete PDF-Datei - ergänzt. de_DE
dc.description.abstract This work generalize the idea of the discretizations on sparse grids to differential forms. The extension to general l-forms in d dimensions includes the well known Whitney elements, as well as H(div)- and H(curl)- conforming mixed finite elements. The construction is based on one-dimensional differential forms, related wavelet representations and their tensor products. In addition to the construction of spaces, interpolation estimates are given. They display the typical efficiency of approximations based on sparse grids. Discrete inf-sup conditions are shown theoreticaly and experimentaly for mixed second order problems. The focus is on the stability of the discretization of the primal and of the dual mixed problem by sparse grid Whitney forms. The explanation of the involved algorithms received a particular attention, filling a gap in the literature. Details on the multilevel transforms, approximate interpolation operators, mass and stiffness matrix multiplications are given. The construction of general stencils on anisotropic full grids completes the detailed description of the multigrid solver based on semicoarsening. en
dc.language.iso de de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Numerische Mathematik , Elektrodynamik , Finite-Elemente-Methode , Dünnes Gitter , Anisotropes Gitter de_DE
dc.subject.ddc 510 de_DE
dc.subject.other Whitney-Elemente , Mehrgitterverfahren , Wirbelstromprobleme , Algorithmen für Dünne Gitter de_DE
dc.subject.other Whitney forms , multilevel methods , multigrid , eddy currents , edge elements en
dc.title Whitney Elemente auf dünnen Gittern de_DE
dc.title Whitney Elements on Sparse Grids en
dc.type PhDThesis de_DE
dc.date.updated 1970-01-01 de_DE
dcterms.dateAccepted 2002-07-12 de_DE
utue.publikation.fachbereich Sonstige - Mathematik und Physik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ doctoralThesis de_DE
utue.opus.id 543 de_DE
thesis.grantor 12/13 Fakultät für Mathematik und Physik de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige