Whitney Elements on Sparse Grids

DSpace Repository


Dateien:
Aufrufstatistik

URI: http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-5436
http://hdl.handle.net/10900/48372
Dokumentart: Dissertation
Date: 2002
Language: German
Faculty: 7 Mathematisch-Naturwissenschaftliche Fakultät
Department: Sonstige - Mathematik und Physik
Advisor: Yserentant, Harry
Day of Oral Examination: 2002-07-12
DDC Classifikation: 510 - Mathematics
Keywords: Numerische Mathematik , Elektrodynamik , Finite-Elemente-Methode , Dünnes Gitter , Anisotropes Gitter
Other Keywords: Whitney-Elemente , Mehrgitterverfahren , Wirbelstromprobleme , Algorithmen für Dünne Gitter
Whitney forms , multilevel methods , multigrid , eddy currents , edge elements
License: Publishing license including print on demand
Order a printed copy: Print-on-Demand
Show full item record

Inhaltszusammenfassung:

Da sich bei einigen Betriebssystemen die PDF-Datei nicht öffnen ließ, wurde eine weitere - technisch überarbeitete PDF-Datei - ergänzt.

Abstract:

This work generalize the idea of the discretizations on sparse grids to differential forms. The extension to general l-forms in d dimensions includes the well known Whitney elements, as well as H(div)- and H(curl)- conforming mixed finite elements. The construction is based on one-dimensional differential forms, related wavelet representations and their tensor products. In addition to the construction of spaces, interpolation estimates are given. They display the typical efficiency of approximations based on sparse grids. Discrete inf-sup conditions are shown theoreticaly and experimentaly for mixed second order problems. The focus is on the stability of the discretization of the primal and of the dual mixed problem by sparse grid Whitney forms. The explanation of the involved algorithms received a particular attention, filling a gap in the literature. Details on the multilevel transforms, approximate interpolation operators, mass and stiffness matrix multiplications are given. The construction of general stencils on anisotropic full grids completes the detailed description of the multigrid solver based on semicoarsening.

This item appears in the following Collection(s)