dc.contributor.author |
Poso, Antti |
|
dc.date.accessioned |
2024-04-18T10:47:16Z |
|
dc.date.available |
2024-04-18T10:47:16Z |
|
dc.date.issued |
2023 |
|
dc.identifier.issn |
1549-9596 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/152888 |
|
dc.language.iso |
en |
en |
dc.publisher |
Washington : Amer Chemical Soc |
de_DE |
dc.relation.uri |
http://dx.doi.org/10.1021/acs.jcim.3c01239 |
|
dc.subject.ddc |
540 |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.title |
Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical Libraries |
de_DE |
dc.type |
Article |
de_DE |
utue.quellen.id |
20240124000000_01422 |
|
utue.publikation.seiten |
5773-5783 |
de_DE |
utue.personen.roh |
Sivula, Toni |
|
utue.personen.roh |
Yetukuri, Laxman |
|
utue.personen.roh |
Kalliokoski, Tuomo |
|
utue.personen.roh |
Kasnanen, Heikki |
|
utue.personen.roh |
Poso, Antti |
|
utue.personen.roh |
Pohner, Ina |
|
dcterms.isPartOf.ZSTitelID |
Journal of Chemical Information and Modeling |
de_DE |
dcterms.isPartOf.ZS-Issue |
18 |
de_DE |
dcterms.isPartOf.ZS-Volume |
63 |
de_DE |
utue.fakultaet |
07 Mathematisch-Naturwissenschaftliche Fakultät |
|
utue.fakultaet |
Sonstige |
|