dc.contributor.author |
Gao, Yapeng |
|
dc.contributor.author |
Tebbe, Jonas |
|
dc.contributor.author |
Zell, Andreas |
|
dc.date.accessioned |
2023-10-11T09:13:37Z |
|
dc.date.available |
2023-10-11T09:13:37Z |
|
dc.date.issued |
2022-10-08 |
|
dc.identifier.issn |
0924-669X |
|
dc.identifier.uri |
http://hdl.handle.net/10900/146138 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
Springer Link |
de_DE |
dc.relation.uri |
http://dx.doi.org/10.1007/s10489-022-04131-w |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.title |
Optimal stroke learning with policy gradient approach for robotic table tennis |
de_DE |
dc.type |
Article |
de_DE |
utue.quellen.id |
20230619000000_02021 |
|
utue.publikation.seiten |
13309-13322 |
de_DE |
utue.personen.roh |
Gao, Yapeng |
|
utue.personen.roh |
Tebbe, Jonas |
|
utue.personen.roh |
Zell, Andreas |
|
dcterms.isPartOf.ZSTitelID |
Applied Intelligence |
de_DE |
dcterms.isPartOf.ZS-Issue |
11 |
de_DE |
dcterms.isPartOf.ZS-Volume |
53 |
de_DE |
utue.fakultaet |
07 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |