dc.contributor.advisor |
Fink, Reinhold F. (Prof. Dr.) |
|
dc.contributor.author |
Behnle, Stefan |
|
dc.date.accessioned |
2023-08-15T15:08:43Z |
|
dc.date.available |
2023-08-15T15:08:43Z |
|
dc.date.issued |
2023-08-15 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/144310 |
|
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1443104 |
de_DE |
dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-85654 |
|
dc.description.abstract |
In dieser Arbeit werden die hybriden Störungstheorien REMP und OO-REMP zur Be-
rechnung der elektronischen Korrelationsenergie von Atomen und Molekülen eingeführt
und validiert. Es handelt sich dabei um quantenchemische Methoden im Formalismus der
Rayleigh-Schrödinger-Störungstheorie, für die hier die Energie 2. Ordnung untersucht wird.
Basierend auf den Partitionierungen der Møller-Plesset- (MP) und der Anregungsgrader-
haltenden Störungstheorie (Retaining the excitation Degree=RE) wird ein ungestörter
Hamiltonoperator mit zugehörigem Störoperator definiert, der sich aus einer gewichteten
Summe der vorgenannten Methoden zusammensetzt, wodurch die REMP-Methode defi-
niert ist. Die neuartige Partitionierung nutzt komplementäre Fehler der zugrunde liegenden
Methoden zur internen Fehlerkompensation. In dieser Arbeit werden Energien bis zur 2.
Ordnung der Störungstheorie untersucht. Es wird gezeigt, dass die REMP-Partitionierung
des elektronischen Hamiltonoperators zu systematisch besseren Ergebnissen führt als
jede der Einzelmethoden allein, wobei die Parametrisierung der Mischung universell
und praktisch systemunabhängig ist. Dies wird am Beispiel unterschiedlicher Typen von
Reaktionsenergien und Gleichgewichtsstrukturen, Schwingungswellenzahlen und elektri-
schen Dipolmomenten kleiner Moleküle demonstriert. Es wird außerdem ein variationelles
Energiefunktional definiert, das auf der Hybridpartitionierung basiert. Dabei wird die
Form der besetzen Molekülorbitale variiert und so optimiert, dass die Gesamtenergie
minimal wird. Die Minimierung dieses Funktionals bezüglich aller variationellen Para-
meter liefert Ergebnisse, die die der kanonischen Methode systematisch übertreffen. Die
vollständig variationelle Methode zeichnet sich zudem durch hervorragende rechnerische
Effizienz bei der Vorhersage molekularer Eigeschaften aus. Es wird gezeigt, dass insbeson-
dere die vollständig variationelle, orbitaloptimierte Variante (OO-REMP) den Kriterien
allgemein anwendbarer Quantenchemiemethoden genügt und hochgenaue Ergebnisse
produziert. Die Validierungen legen nahe, dass OO-REMP für single-reference-Systeme
für die meisten Thermochmie-Testsätze chemische Genauigkeit erreicht (Root mean
square-Fehler ⩽1 kcal mol−1 ). Die neu entwickelten Methoden wurden in ein quelloffenes
Quantenchemieprogramm implementiert und stehen nun jedermann zur Verfügung. |
de_DE |
dc.description.abstract |
In this work, the hybrid perturbation theories REMP and OO-REMP for the calculation of
electronic correlation energies of atoms and molecules are introduced and validated. These
are quantum chemical methods in the framework of Rayleigh-Schrödinger perturbation
theory, whose second order energy is investigated here. Based on the partitionings of
the Møller-Plesset (MP) and the Retaining the Excitation Degree (RE) perturbation
theory, an unperturbed Hamiltonian with a corresponding perturbation operator is
defined, which is a weighted sum of the previous methods, thereby defining the REMP
method. The novel partitioning has the property to exploit complementary errors of
the parent methods for internal error compensation. In this work, energies up to 2nd
order in perturbation theory are investigated. It is shown that the REMP partitioning
of the electronic Hamiltonian leads to systematically better results than each of the
original methods, with the important aspect that the parameterization of the mixture is
universal and practically independent of the system considered. This is demonstrated with
the example various types of reaction energies and equilibrium structures, vibrational
wavenumbers, and electric dipole moments of small molecules. Furthermore, a variational
energy functional based on the hybrid partitioning is defined. Here, the shape of the
occupied molecular orbitals is varied and optimized such, that the total energy becomes
minimal. The minimization of this functional with respect to all variational parameters
provides results which systematically surpass those of the canonical method. The fully
variational method is furthermore characterized by outstanding computational efficiency
regarding the prediction of molecular properties. It is shown that especially the fully
variational, orbital-optimized variant suffices the criteria of a generally applicable quantum
chemical method and does produce highly accurate results. The validations imply that for
single-reference systems OO-REMP reaches chemical accuracy (root mean square error
⩽1 kcal mol−1) for most of the thermodynamic test sets. The newly developed methods
were implemented in an open-source quantum chemistry program package and are now
available to everyone. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Störungstheorie , Computational chemistry , Quantenmechanik |
de_DE |
dc.subject.ddc |
500 |
de_DE |
dc.subject.ddc |
540 |
de_DE |
dc.subject.other |
Methodenentwicklung |
de_DE |
dc.title |
Development and Validation of the REMP and OO-REMP Hybrid Perturbation Theories |
en |
dc.type |
PhDThesis |
de_DE |
dcterms.dateAccepted |
2023-07-17 |
|
utue.publikation.fachbereich |
Chemie |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
utue.publikation.noppn |
yes |
de_DE |