dc.contributor.author |
Leonidou, Nantia |
|
dc.contributor.author |
Renz, Alina |
|
dc.contributor.author |
Mostolizadeh, Reihaneh |
|
dc.contributor.author |
Dräger, Andreas |
|
dc.date.accessioned |
2023-03-27T14:18:30Z |
|
dc.date.available |
2023-03-27T14:18:30Z |
|
dc.date.issued |
2023-03-23 |
|
dc.identifier.issn |
1553-7358 |
|
dc.identifier.uri |
http://hdl.handle.net/10900/138651 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
San Francisco, Calif. : Public Library of Science |
de_DE |
dc.relation.uri |
https://doi.org/10.1371/journal.pcbi.1010903 |
de_DE |
dc.subject |
host-virus interactions |
de_DE |
dc.subject |
tissue-specific model |
de_DE |
dc.subject |
antiviral targets |
de_DE |
dc.subject |
flux balance analysis |
de_DE |
dc.subject |
flux variability analysis |
de_DE |
dc.subject |
reaction knockout |
de_DE |
dc.subject |
host-derived enforcement |
de_DE |
dc.subject |
metabolic modeling |
de_DE |
dc.subject |
virus mutations |
de_DE |
dc.subject |
nucleoside diphosphate kinase |
de_DE |
dc.subject.classification |
Wirt , Viren , Interaktion , Modellierung , COVID-19 , SARS-CoV-2 , Wirkstoff , Stoffwechsel , Metabolismus , Mutation , Software Engineering , Python |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.subject.ddc |
500 |
de_DE |
dc.subject.ddc |
570 |
de_DE |
dc.subject.ddc |
610 |
de_DE |
dc.title |
New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells |
de_DE |
dc.type |
Article |
de_DE |
utue.publikation.seiten |
E1010903 |
de_DE |
utue.personen.roh |
Leonidou, Nantia |
|
utue.personen.roh |
Renz, Alina |
|
utue.personen.roh |
Mostolizadeh, Reihaneh |
|
utue.personen.roh |
Dräger, Andreas |
|
dcterms.isPartOf.ZSTitelID |
PLOS Computational Biology |
de_DE |
dcterms.isPartOf.ZS-Issue |
3 |
de_DE |
dcterms.isPartOf.ZS-Volume |
19 |
de_DE |
utue.fakultaet |
04 Medizinische Fakultät |
de_DE |