Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Taghizadeh-Mehrjardi, Ruhollah
dc.contributor.author Scholten, Thomas
dc.date.accessioned 2022-07-26T11:09:15Z
dc.date.available 2022-07-26T11:09:15Z
dc.date.issued 2021
dc.identifier.issn 2072-4292
dc.identifier.uri http://hdl.handle.net/10900/129752
dc.language.iso en de_DE
dc.publisher Mdpi de_DE
dc.relation.uri http://dx.doi.org/10.3390/rs13051025 de_DE
dc.subject.ddc 550 de_DE
dc.subject.ddc 570 de_DE
dc.subject.ddc 600 de_DE
dc.subject.ddc 610 de_DE
dc.title Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions de_DE
dc.type Article de_DE
utue.quellen.id 20210512015105_00604
utue.personen.roh Taghizadeh-Mehrjardi, Ruhollah
utue.personen.roh Emadi, Mostafa
utue.personen.roh Cherati, Ali
utue.personen.roh Heung, Brandon
utue.personen.roh Mosavi, Amir
utue.personen.roh Scholten, Thomas
dcterms.isPartOf.ZSTitelID Remote Sensing de_DE
dcterms.isPartOf.ZS-Issue Article 1025 de_DE
dcterms.isPartOf.ZS-Volume 13 (5) de_DE
utue.fakultaet 07 Mathematisch-Naturwissenschaftliche Fakultät de_DE


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

Das Dokument erscheint in:

Zur Kurzanzeige