Abstract:
Cyanobacteria are known as producers of a wide range of secondary metabolites with various functions. This includes the synthesis of allelopathic inhibitors, which suppress the growth of other organisms within the same ecological niche. These compounds are usually produced by filamentous cyanobacteria via huge gene clusters. Nevertheless, a bioactive deoxy-sugar, namely 7-deoxysedoheptulose (7dSh), was recently isolated from the culture supernatant of the unicellular cyanobacterium Synechococcus elongatus PCC 7942 (S. elongatus). In this work the biosynthetic pathway of 7dSh formation was elucidated by means of supernatant analysis via gas chromatography-mass spectrometry, feeding experiments and knockout mutants. 7dSh derives from 5-deoxyadenosine (5dAdo), an inhibitory by-product of radical SAM enzymes, which are present in all domains of life. 5dAdo is metabolized by solely promiscuous activity of enzymes of the primary metabolism, resulting in the excretion first of 5-deoxyribose and subsequently of 7dSh into the culture supernatant. This strategy enables S. elongatus, which has a small, stream-lined genome lacking canonical gene clusters for the synthesis of secondary metabolites, to produce an allelopathic inhibitor from a “waste” product of primary metabolism by enzymatic promiscuity, without involving a specific gene cluster. This discovery challenges the view on the biosynthesis of bioactive molecules as sole products of biosynthetic gene clusters and expands the range of bioactive compounds which can be synthesized. Additionally, with the elucidation of the biosynthesis of 7dSh, an alternative pathway for 5dAdo salvage was discovered, which had previously not been described.
In the second part of this work, the intracellular target of 7dSh, the dehydroquinate synthase, which is the second enzyme of the shikimate pathway, was confirmed. By the development of an in vitro inhibition assay using purified enzyme, it was shown that 7dSh inhibits the enzyme in a competitive manner, with an inhibition constant as well as an IC50-value in the lower µM range.
Besides the inhibition of other cyanobacteria, 7dSh also inhibits the growth of germinating plant seedlings on soil, indicating that it might be used as an herbicide. Furthermore, it was shown that in Anabaena variabilis ATCC 29413 and Synechocystis sp. PCC 6803, the inhibitory effect of this molecule is correlated with an effective uptake via structurally different, promiscuous sugar transporters – a fructose ABC-transporter or a glucose permease. Spontaneous mutations in these transport proteins can result in the loss of 7dSh sensitivity, however the capability of heterotrophic growth is disabled at the same time. 7dSh can therefore be assumed to represent the first allelopathic inhibitor targeting the shikimate pathway, supporting S. elongatus in its niche competition.