Electrical imaging of light-induced signals within and across retinal layers

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/113170
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1131707
http://dx.doi.org/10.15496/publikation-54546
Dokumentart: Dissertation
Erscheinungsdatum: 2021-03-09
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Physik
Gutachter: Zeck, Günther (Dr.)
Tag der mündl. Prüfung: 2021-01-26
DDC-Klassifikation: 500 - Naturwissenschaften
Schlagworte: Netzhaut , CMOS
Freie Schlagwörter:
micro-electrode array
electrical imaging
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Gedruckte Kopie bestellen: Print-on-Demand
Zur Langanzeige

Abstract:

The mammalian retina processes sensory signals through two major pathways: a vertical excitatory pathway, which involves photoreceptors, bipolar cells and ganglion cells, and a horizontal inhibitory pathway, which involves horizontal cells and amacrine cells. This concept explains the generation of excitatory center – inhibitory surround sensory receptive fields but fails to explain modulation of the retinal output by stimuli outside the receptive field. Electrical imaging of the light-induced signal propagation at high spatial and temporal resolution across and within different retinal layers might reveal mechanisms and circuits involved in the remote modulation of the retinal output. Here I took advantage of a high-density complementary metal-oxide semiconductor -based microelectrode array and investigated light-induced propagation of local field potentials in vertical mouse retina slices. I found that the local field potentials propagation within the different retinal layers depends on stimulus duration and stimulus background. Application of the same spatially restricted light stimuli to flat-mount retina induced ganglion cell activity at remote distances from stimulus center. This effect disappeared if a global background was provided or if gap junctions were blocked. I hereby presented a neurotechnological approach and demonstrated its application, in which electrical imaging evaluates stimulus-dependent signal processing across different neural layers.

Das Dokument erscheint in: