Quotient Presentations of Mori Dream Spaces

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/97666
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-976664
http://dx.doi.org/10.15496/publikation-39049
Dokumentart: Dissertation
Erscheinungsdatum: 2020-02-06
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Mathematik
Gutachter: Hausen, Jürgen (Prof. Dr.)
Tag der mündl. Prüfung: 2019-11-08
DDC-Klassifikation: 510 - Mathematik
Schlagworte: Algebraische Geometrie , Birationale Geometrie , Quotient , Invariantentheorie
Freie Schlagwörter: Cox-Ring
Iteration von Cox-Ringen
Varietät vom Fano Typ
klt Singularität
kanonische Singularität
Gorenstein
vollständiger Durchschnitt
Spezielle lineare Gruppe
Invariantenring
Kovarianten
Cox ring
iteration of Cox rings
variety of Fano type
klt singularity
canonical singularity
complete intersection
special linear group
ring of invariants
covariants
Mori Dream Space
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Gedruckte Kopie bestellen: Print-on-Demand
Zur Langanzeige

Abstract:

In the present thesis, we investigate quotient presentations of Mori Dream Spaces. In the first part, we show that varieties of Fano type and klt quasicones have finite iteration of Cox rings with factorial canonical master Cox ring. The variety can be presented as a quotient of the maximal spectrum of this ring by a solvable reductive group. The second part aims to present such factorial canonical rings as invariant rings of the special linear group over the complex numbers. We develop several algorithms to compute such invariants. In particular, we determine invariants in dimensions four and five for arbitrary sums of fundamental representations. Moreover, we complete the classification of complete intersection invariant rings of the special linear group. In the third part of the thesis, we classify compound du Val and canonical threefold singularities with a good two-torus action and we determine their tree of Cox ring iterations. In the last part, we give an outlook of how these different quotient presentations can possibly be combined.

Das Dokument erscheint in: