Abstract:
In recent years, it has been shown that there is a supraspinal network for the control of gait. It consists of motor, cognitive and limbic structures and their projections. These supraspinal networks have an important influence on walking behaviour, e.g., in dual tasking situations. Dual tasking situations are very relevant in everyday life, because they occur very often, e.g. when talking while walking. Deficits in dual tasking can lead to impaired walking and falls. These deficits are most likely driven by deficits in executive functions, such as cognitive flexibility, as they play a particularly important role in the control of dual tasking behaviour.
This thesis presents and discusses two publications about the association of cognitive flexibility and prioritization, as well as the association of cognitive flexibility and quantitative gait parameters and their adaptation to dual tasking conditions.
In both publications, more than 660 healthy older people, aged between 50 and 80 years, were assessed using four single task conditions (subtracting, checking boxes, walking at convenient speed and walking at fast speed) and two dual task conditions (walking at fast speed with checking boxes and walking at fast speed with subtracting serial 7s). As a measure of cognitive flexibility, the Trail Making Test (TMT) was performed.
In publication 1, dual task costs (i.e., the percent decline of task performance under dual tasking compared to single tasking) were calculated. The dual task cost of each task was compared between the tertile of participants with the best (good TMT performers) and of the tertile with the worst (poor TMT performers) performance in the TMT. Under the dual tasking walking while subtracting serial 7s condition, good TMT performers prioritized walking over subtracting. Conversely, poor TMT performers prioritized the subtracting task over walking. These results suggested an association of cognitive flexibility and prioritization.
In publication 2, quantitative gait parameters, collected with a wearable sensor-unit, were correlated with performance of the TMT. We found that a higher number of gait parameters were significantly correlated with the TMT when the gait task was more challenging. The strongest correlation was found for walking speed in the dual task walking while subtracting serial 7s condition. This indicates that gait speed is an important gait parameter for the investigation of the association of cognitive flexibility with gait, although the parameter is obviously unspecific. In addition, patterns of differences of gait parameters across the conditions of single task walking at fast speed and dual task walking while checking boxes and dual task walking while subtracting serial 7s were compared between good and poor TMT performers. Here, we found different patterns across conditions in the parameters gait variability, phase coordination index, and gait asymmetry. Subjects with good cognitive flexibility seem to switch or adapt strategies between tasks, while participants with poorer cognitive flexibility have limited resources for these adaptations. The findings of this analysis also suggest that cognitive flexibility is important for walking in older adults, and people with poor cognitive flexibility have deficits in adapting walking to challenging walking conditions.
The results of both studies suggest that cognitive flexibility is an important contributor to safe walking, especially under challenging walking conditions, e.g., dual tasking. We hypothesize that prioritization and adaptation mechanisms of gait are parts of a complex interaction network between cognitive flexibility (deficits) and falls. This should be investigated in more detail in further studies.