dc.contributor.advisor |
Schöbel, Rainer (Prof. Dr.-Ing.) |
|
dc.contributor.author |
Sturn, Raphael Christian Benedikt |
|
dc.date.accessioned |
2019-12-20T10:16:49Z |
|
dc.date.available |
2019-12-20T10:16:49Z |
|
dc.date.issued |
2019-12-20 |
|
dc.identifier.other |
1687864888 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/96710 |
|
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-967102 |
de_DE |
dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-38093 |
|
dc.description.abstract |
As a result of the global financial crisis, the credit risk of OTC derivatives became
a more important issue in finance industry. In contrast to exchange traded markets,
OTC markets lack the advantage of a central clearing house ensuring that the
counterparties fulfill their obligations. The risk that the promised payments are
not made is called counterparty or default risk. Derivatives subject to counterparty
risk are called vulnerable derivatives. Since the counterparty risk cannot be ignored,
it should be considered in the valuation of OTC derivatives.
This dissertation addresses the valuation of European and American options which
are traded on OTC markets. Both European and American options exhibit unilateral
counterparty risk, since these contracts constitute an obligation only for the option
writer. For vulnerable European options, the valuation models of Klein (1996), Klein
and Inglis (2001) as well as Liu and Liu (2011) prevail in the literature. Based
on an extended Black-Scholes world, they use the structural approach of Merton
(1974) to price European options subject to counterparty risk. In this dissertation, these models are combined in a general model which incorporates their key characteristics.
Moreover, the mentioned models are extended to a stochastic interest rate framework.
In addition, valuation models for vulnerable American options are set up using the
core ideas of Klein (1996), Klein and Inglis (2001) as well as Liu and Liu (2011). |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Bewertung , Wertpapier , Markt , Kreditmarkt , Differentialgleichung , Liquidität |
de_DE |
dc.subject.ddc |
330 |
de_DE |
dc.subject.other |
Optionspreistheorie |
de_DE |
dc.subject.other |
Optionsbewertung |
de_DE |
dc.subject.other |
Europäische Optionen |
de_DE |
dc.subject.other |
Amerikanische Optionen |
de_DE |
dc.subject.other |
Kontrahentenrisiko |
de_DE |
dc.subject.other |
Ausfallrisiko |
de_DE |
dc.subject.other |
Over-the-Counter |
de_DE |
dc.subject.other |
Stochastische Zinsen |
de_DE |
dc.subject.other |
Vasicek-Modell |
de_DE |
dc.subject.other |
Monte Carlo Simulation |
de_DE |
dc.subject.other |
Bewertungsformel |
de_DE |
dc.subject.other |
Valuation Formula |
en |
dc.subject.other |
Vasicek Model |
en |
dc.subject.other |
Stochastic Interest Rates |
en |
dc.subject.other |
Over-the-Counter |
en |
dc.subject.other |
Default Risk |
en |
dc.subject.other |
Counterparty Risk |
en |
dc.subject.other |
American Options |
en |
dc.subject.other |
European Options |
en |
dc.subject.other |
Option Valuation |
en |
dc.title |
The Valuation of Option Contracts subject to Counterparty Risk |
en |
dc.type |
PhDThesis |
de_DE |
dcterms.dateAccepted |
2019-08-19 |
|
utue.publikation.fachbereich |
Wirtschaftswissenschaften |
de_DE |
utue.publikation.fakultaet |
6 Wirtschafts- und Sozialwissenschaftliche Fakultät |
de_DE |