The Valuation of Option Contracts subject to Counterparty Risk

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Schöbel, Rainer (Prof. Dr.-Ing.)
dc.contributor.author Sturn, Raphael Christian Benedikt
dc.date.accessioned 2019-12-20T10:16:49Z
dc.date.available 2019-12-20T10:16:49Z
dc.date.issued 2019-12-20
dc.identifier.other 1687864888 de_DE
dc.identifier.uri http://hdl.handle.net/10900/96710
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-967102 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-38093
dc.description.abstract As a result of the global financial crisis, the credit risk of OTC derivatives became a more important issue in finance industry. In contrast to exchange traded markets, OTC markets lack the advantage of a central clearing house ensuring that the counterparties fulfill their obligations. The risk that the promised payments are not made is called counterparty or default risk. Derivatives subject to counterparty risk are called vulnerable derivatives. Since the counterparty risk cannot be ignored, it should be considered in the valuation of OTC derivatives. This dissertation addresses the valuation of European and American options which are traded on OTC markets. Both European and American options exhibit unilateral counterparty risk, since these contracts constitute an obligation only for the option writer. For vulnerable European options, the valuation models of Klein (1996), Klein and Inglis (2001) as well as Liu and Liu (2011) prevail in the literature. Based on an extended Black-Scholes world, they use the structural approach of Merton (1974) to price European options subject to counterparty risk. In this dissertation, these models are combined in a general model which incorporates their key characteristics. Moreover, the mentioned models are extended to a stochastic interest rate framework. In addition, valuation models for vulnerable American options are set up using the core ideas of Klein (1996), Klein and Inglis (2001) as well as Liu and Liu (2011). en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Bewertung , Wertpapier , Markt , Kreditmarkt , Differentialgleichung , Liquidität de_DE
dc.subject.ddc 330 de_DE
dc.subject.other Optionspreistheorie de_DE
dc.subject.other Optionsbewertung de_DE
dc.subject.other Europäische Optionen de_DE
dc.subject.other Amerikanische Optionen de_DE
dc.subject.other Kontrahentenrisiko de_DE
dc.subject.other Ausfallrisiko de_DE
dc.subject.other Over-the-Counter de_DE
dc.subject.other Stochastische Zinsen de_DE
dc.subject.other Vasicek-Modell de_DE
dc.subject.other Monte Carlo Simulation de_DE
dc.subject.other Bewertungsformel de_DE
dc.subject.other Valuation Formula en
dc.subject.other Vasicek Model en
dc.subject.other Stochastic Interest Rates en
dc.subject.other Over-the-Counter en
dc.subject.other Default Risk en
dc.subject.other Counterparty Risk en
dc.subject.other American Options en
dc.subject.other European Options en
dc.subject.other Option Valuation en
dc.title The Valuation of Option Contracts subject to Counterparty Risk en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2019-08-19
utue.publikation.fachbereich Wirtschaftswissenschaften de_DE
utue.publikation.fakultaet 6 Wirtschafts- und Sozialwissenschaftliche Fakultät de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige