Surgery for extended Ricci flow systems

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Huisken, Gerhard (Prof. Dr.)
dc.contributor.author Johne, Florian
dc.date.accessioned 2019-12-16T11:31:54Z
dc.date.available 2019-12-16T11:31:54Z
dc.date.issued 2019-12-16
dc.identifier.other 1685714161 de_DE
dc.identifier.uri http://hdl.handle.net/10900/96423
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-964235 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-37806
dc.description.abstract In this thesis extended Ricci flow systems, which are obtained by coupling Ricci flow to the harmonic map heat flow, are studied. The interest in this system stems from its connection to static solutions to the vacuum Einstein equations and Ricci flow on manifolds with warped product metrics. We prove a convergence theorem and a singularity classification theorem and construct the flow with surgery in the spirit of Hamilton and Perelman for three-dimensional solutions. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Geometrische Analysis de_DE
dc.subject.ddc 510 de_DE
dc.subject.other Ricci-Fluss de_DE
dc.subject.other Chirugie de_DE
dc.subject.other Parabolische partielle Differentialgleichungen de_DE
dc.subject.other Parabolic partial differential equations en
dc.subject.other Surgery en
dc.subject.other Ricci flow en
dc.title Surgery for extended Ricci flow systems en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2019-11-08
utue.publikation.fachbereich Mathematik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige