Calibrating Depth Sensors with a Genetic Algorithm

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/87699
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-876993
http://dx.doi.org/10.15496/publikation-29085
Dokumentart: Verschiedenartige Texte
Erscheinungsdatum: 2019-04-11
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Informatik
DDC-Klassifikation: 004 - Informatik
Schlagworte: Algorithmus , Optimierung , Kamera , Stereokamera , Lidar
Freie Schlagwörter:
stereo vision
depth sensor calibration
genetic algorithm
kitti
optimization
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Gedruckte Kopie bestellen: Print-on-Demand
Zur Langanzeige

Inhaltszusammenfassung:

In this report, we deal with the optimization of the transformation estimate between the coordinate systems of depth sensors, \ie sensors that produce 3D measurements. For that, we present a novel method using a genetic algorithm to refine the six degrees of freedom (6 DoF) transformation via three rotational and three translational offsets. First, we demonstrate the necessity for an accurate depth sensor calibration using a depth error model of stereo cameras. The fusion of stereo disparity assumes a Gaussian disparity error distribution, which we examine with different stereo matching algorithms on the widely-used KITTI visual odometry dataset. Our analysis shows that the existing calibration is not adequate for accurate disparity fusion. As a consequence, we employ our genetic algorithm on this particular dataset, which results in a greatly improved calibration between the mounted stereo camera and the Lidar. Thus, stereo disparity estimates show improved results in quantitative evaluations.

Das Dokument erscheint in: