Text–to–Video: Image Semantics and NLP

DSpace Repository


Dateien:

URI: http://hdl.handle.net/10900/87555
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-875550
http://dx.doi.org/10.15496/publikation-28941
Dokumentart: Dissertation
Date: 2019-04-05
Language: English
Faculty: 7 Mathematisch-Naturwissenschaftliche Fakultät
Department: Informatik
Advisor: Lensch, Hendrik P. A. (Prof. Dr.)
Day of Oral Examination: 2018-07-23
DDC Classifikation: 004 - Data processing and computer science
Keywords: Bildverarbeitung , Semantik , Natürliche Sprache
Other Keywords:
Image Processing
Natural Language Processing
Image Semantics
Semantic Relatedness
Auto-Illustration
Emotion
Aesthetics
Color
Visual Style
License: Publishing license including print on demand
Order a printed copy: Print-on-Demand
Show full item record

Inhaltszusammenfassung:

Bei der automatischen Umwandlung eines beliebigen Textes in eine visuelle Geschichte, besteht die größte Herausforderung darin eine semantisch passende visuelle Darstellung zu finden. Dabei sollte die Bedeutung der Darstellung dem vorgegebenen Text entsprechen. Darüber hinaus hat die Erscheinung eines Bildes einen großen Einfluß darauf, wie seine bedeutungsvollen Inhalte auf einen Betrachter übertragen werden. Diese Dissertation zeigt, dass die Erforschung sowohl der Bildsemantik als auch der semantischen Verbindung zwischen visuellen und textuellen Quellen es ermöglicht, die anspruchsvolle semantische Lücke zu schließen und eine semantisch nahe Übersetzung von natürlicher Sprache in eine entsprechend sinngemäße visuelle Darstellung zu finden. Des Weiteren gewann die soziale Vernetzung in den letzten Jahren zunehmend an Bedeutung, was zu einer enormen und immer noch wachsenden Menge an online verfügbaren Daten geführt hat. Foto-Sharing-Websites wie Flickr ermöglichen es Benutzern, Textinformationen mit ihren hochgeladenen Bildern zu verknüpfen. Die vorliegende Arbeit nutzt die enorme Wissensquelle von benutzergenerierten Daten welche erste Verbindungen zwischen Bildern und Wörtern sowie anderen aussagekräftigen Daten zur Verfügung stellt. Zur Erforschung der visuellen Semantik stellt diese Arbeit unterschiedliche Methoden vor, um die visuelle Struktur sowie die Wirkung von Bildern in Bezug auf bedeutungsvolle Ähnlichkeiten, ästhetische Erscheinung und emotionalem Einfluss auf einen Beobachter zu analysieren. Genauer gesagt, findet unser GPU-basierter Ansatz effizient visuelle Ähnlichkeiten zwischen Bildern in großen Datenmengen quer über visuelle Domänen hinweg und identifiziert verschiedene Bedeutungen für mehrdeutige Wörter durch die Erforschung von Ähnlichkeiten in Online-Suchergebnissen. Des Weiteren wird die höchst subjektive ästhetische Anziehungskraft von Bildern untersucht und "deep learning" genutzt, um direkt ästhetische Einordnungen aus einer breiten Vielfalt von Benutzerreaktionen im sozialen Online-Verhalten zu lernen. Um noch tiefere Erkenntnisse über den Einfluss des visuellen Erscheinungsbildes auf einen Betrachter zu gewinnen, wird erforscht, wie alleinig einfache Bildverarbeitung in der Lage ist, tatsächlich die emotionale Wahrnehmung zu verändern und ein einfacher aber wirkungsvoller Bildfilter davon abgeleitet werden kann. Um bedeutungserhaltende Verbindungen zwischen geschriebenem Text und visueller Darstellung zu ermitteln, werden Methoden des "Natural Language Processing (NLP)" verwendet, die der Verarbeitung natürlicher Sprache dienen. Der Einsatz umfangreicher Textverarbeitung ermöglicht es, semantisch relevante Illustrationen für einfache Textteile sowie für komplette Handlungsstränge zu erzeugen. Im Detail wird ein Ansatz vorgestellt, der Abhängigkeiten in Textbeschreibungen auflöst, um 3D-Modelle korrekt anzuordnen. Des Weiteren wird eine Methode entwickelt die, basierend auf einem neuen hierarchischen Such-Anfrage Algorithmus, semantisch relevante Illustrationen zu Texten verschiedener Art findet. Schließlich wird ein optimierungsbasiertes Framework vorgestellt, das nicht nur semantisch relevante, sondern auch visuell kohärente Bildgeschichten in verschiedenen Bildstilen erzeugen kann.

Abstract:

When aiming at automatically translating an arbitrary text into a visual story, the main challenge consists in finding a semantically close visual representation whereby the displayed meaning should remain the same as in the given text. Besides, the appearance of an image itself largely influences how its meaningful information is transported towards an observer. This thesis now demonstrates that investigating in both, image semantics as well as the semantic relatedness between visual and textual sources enables us to tackle the challenging semantic gap and to find a semantically close translation from natural language to a corresponding visual representation. Within the last years, social networking became of high interest leading to an enormous and still increasing amount of online available data. Photo sharing sites like Flickr allow users to associate textual information with their uploaded imagery. Thus, this thesis exploits this huge knowledge source of user generated data providing initial links between images and words, and other meaningful data. In order to approach visual semantics, this work presents various methods to analyze the visual structure as well as the appearance of images in terms of meaningful similarities, aesthetic appeal, and emotional effect towards an observer. In detail, our GPU-based approach efficiently finds visual similarities between images in large datasets across visual domains and identifies various meanings for ambiguous words exploring similarity in online search results. Further, we investigate in the highly subjective aesthetic appeal of images and make use of deep learning to directly learn aesthetic rankings from a broad diversity of user reactions in social online behavior. To gain even deeper insights into the influence of visual appearance towards an observer, we explore how simple image processing is capable of actually changing the emotional perception and derive a simple but effective image filter. To identify meaningful connections between written text and visual representations, we employ methods from Natural Language Processing (NLP). Extensive textual processing allows us to create semantically relevant illustrations for simple text elements as well as complete storylines. More precisely, we present an approach that resolves dependencies in textual descriptions to arrange 3D models correctly. Further, we develop a method that finds semantically relevant illustrations to texts of different types based on a novel hierarchical querying algorithm. Finally, we present an optimization based framework that is capable of not only generating semantically relevant but also visually coherent picture stories in different styles.

This item appears in the following Collection(s)