Distribution-Dissimilarities in Machine Learning

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Schölkopf, Bernhard (Prof. Dr.)
dc.contributor.author Simon-Gabriel, Carl-Johann
dc.date.accessioned 2019-03-27T06:41:30Z
dc.date.available 2019-03-27T06:41:30Z
dc.date.issued 2019-03-27
dc.identifier.other 1662448775 de_DE
dc.identifier.uri http://hdl.handle.net/10900/87256
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-872561 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-28642
dc.description.abstract Any binary classifier (or score-function) can be used to define a dissimilarity between two distributions. Many well-known distribution-dissimilarities are actually classifier-based: total variation, KL- or JS-divergence, Hellinger distance, etc. And many recent popular generative modeling algorithms compute or approximate these distribution-dissimilarities by explicitly training a classifier: e.g. generative adversarial networks (GAN) and their variants. This thesis introduces and studies such classifier-based distribution-dissimilarities. After a general introduction, the first part analyzes the influence of the classifiers' capacity on the dissimilarity's strength for the special case of maximum mean discrepancies (MMD) and provides applications. The second part studies applications of classifier-based distribution-dissimilarities in the context of generative modeling and presents two new algorithms: Wasserstein Auto-Encoders (WAE) and AdaGAN. The third and final part focuses on adversarial examples, i.e. targeted but imperceptible input-perturbations that lead to drastically different predictions of an artificial classifier. It shows that adversarial vulnerability of neural network based classifiers typically increases with the input-dimension, independently of the network topology. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Maschinelles Lernen , Künstliche Intelligenz , Maschinelles Sehen , Lerntheorie , Statistik , Wahrscheinlichkeitsrechnung , Hilbert-Raum de_DE
dc.subject.ddc 004 de_DE
dc.subject.ddc 500 de_DE
dc.subject.other Distances for Probability Distributions en
dc.subject.other Divergences en
dc.subject.other Generative Algorithms en
dc.subject.other Generative Algorithmen de_DE
dc.subject.other Adversarial Examples en
dc.subject.other Gegnerische Beispiele de_DE
dc.subject.other Divergenzen de_DE
dc.subject.other Distanzen über Wahrscheinlichkeitsmaße de_DE
dc.title Distribution-Dissimilarities in Machine Learning en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2018-12-17
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige