Electron Transfer at Iron Mineral Surface in the Presence of aqueous Sulfide and Dissolved Organic Matter under Anoxic Condition

DSpace Repository


Dateien:

URI: http://hdl.handle.net/10900/86436
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-864364
http://dx.doi.org/10.15496/publikation-27824
Dokumentart: Dissertation
Date: 2021-02-12
Language: English
Faculty: 7 Mathematisch-Naturwissenschaftliche Fakultät
Department: Geographie, Geoökologie, Geowissenschaft
Advisor: Haderlein, Stefan (Prof. Dr.)
Day of Oral Examination: 2018-12-12
DDC Classifikation: 500 - Natural sciences and mathematics
550 - Earth sciences
Keywords: Sulfide , Goethit , Redox Trio , Organischer Stoff
Show full item record

Inhaltszusammenfassung:

 
Die Wechselwirkung zwischen Eisenoxiden und gelöstem Sulfid ist ein wichtiger biogeochemischer Prozess in anoxischen Wässern. Die Hauptprodukte dieser Reaktion sind elementarer Schwefel und zweiwertiges Eisen, sowie gebildete metastabile Eisensulfid-Minerale, welche zu thermodynamisch stabilem Pyrit umgewandelt werden können. Daher spielen diese Reaktionen eine wichtige Rolle im Eisen- und Schwefelkreislauf in natürlichen System. In anoxischen aquatischen Systemen sind Fe(II) und natürliches organisches Material (NOM) stets vorhanden und es ist wahrscheinlich, dass diese die Reaktion zwischen Eisenoxiden und Sulfid beeinflussen. Jedoch ist wenig darüber bekannt, wie und in welchem Ausmaß dies der Fall ist. Deshalb wurde in dieser Arbeit die Rolle von Fe(II) und NOM auf die Wechselwirkung von Eisenoxiden und Sulfid untersucht. In Anbetracht der Tatsache, dass an Minerale adsorbiertes Fe(II) (Fe(II)sorb) ein hohes Reduktionspotential aufweist und elementarer Schwefel das Hauptprodukt der Oxidation von Sulfid ist, wurde ebenfalls untersucht, ob und unter welchen Bedingungen elementarer Schwefel durch Fe(II) reduziert werden kann, welches an Eisenmineralen adsorbiert ist. Die Hauptspezies von Schwefel und Eisen wurden mittels nasschemischer Analyse bestimmt. Zusätzlich wurde Mössbauer-Spektroskopie angewendet, um die mögliche Bildung sekundärer Eisenminerale zu untersuchen. Die Anwesenheit und Speziierung von Fe(II) hatte einen großen Einfluss auf den Reaktionsverlauf, und Rate, sowie die Produkte der Reaktion zwischen Goethit und gelöstem Sulfid. In der Abwesenheit von Fe(II) war die Reaktion zwischen strukturellem Fe(III) in Goethit und Sulfid ausgeprägt und hatte die Bildung hoher Konzentrationen an elementarem Schwefel zur Folge. Im Falle kompletter Adsorption von gelöstem Fe(II) (Fe(II)aq) an Goethit wurde die Oxidation von Sulfid merklich gehemmt. Jedoch fand die Oxidation von Sulfid zu elementarem Schwefel statt, wenn signifikante Mengen an Fe(II)sorb und Fe(II)aq vorhanden waren. Für dieses System wurde eine Reaktion von Sulfid mit dynamisch gebildeten Fe(III)-Oberflächenspezies hypothesiert. Hierbei ist die Anwesenheit von Fe(II)aq nötig, um erneut Fe(II)sorb-Spezies zu bilden, welche partiell Elektronen in das Goethit überführen und dadurch zu Fe(III) oxidiert wurden. Somit wurde die Reaktion von Sulfid mit Goethit in der Anwesenheit von Fe(II)aq auf die kontinuierliche Regeneration von reaktiven Fe(III)-Spezies auf der Goethit-Oberfläche zurück geführt. Hierbei konnten keine sekundären Eisenminerale mittels Mössbauer-Spektroskopie nachgewiesen werden. Die Anwesenheit von Aldrich Huminsäure (AHA) verhinderte die Redoxreaktion zwischen Sulfid und Goethit in der Anwesenheit von Fe(II) aufgrund der Adsorption der Huminsäure an die Goethit-Oberfläche. Dies führte zu geringeren Konzentrationen an Transformationsprodukten (Thiosulfat und Sulfat wurden nicht nachgewiesen). Im untersuchten AHA-Konzentrationsbereich (10 mgC/L – 40mgC/L) spielte die Bildung einer Huminsäureschicht auf der Mineraloberfläche eine ausschlaggebende Rolle für den gesamten Reaktionsprozess, wohingegen der Einfluss des Redoxzustands unerheblich war. Zudem wurde ein kleiner Teil des Sulfids in die AHA-Struktur eingebaut, was zusätzlich zu der Hemmung der Reaktion zwischen Sulfid und Goethit beitrug. Schlussendlich wurde die Reduktion von elementarem Schwefel durch Fe(II)sorb auf Goehtit unter anoxischen Bedingungen und im neutralen pH-Bereich untersucht. Neben der Reduktion von S0 zu Sulfid durch Fe(II)sorb und der darauf folgenden Bildung von FeS und Polysulfiden, wurde zudem die Oxidation von S0 zu Sulfat gezeigt. Diese Oxidation deutete auf die Anwesenheit reaktiver Fe(III)-Spezies auf der Goethit-Oberfläche hin. Goethit und Fe(II) hemmten die Bildung von Polysulfiden, da diese schnell zu Sulfid und elementarem Schwefel zerfielen. Die Ergebnisse dieser Arbeit geben neue und wichtige Einblicke in die Wechselwirkung zwischen Goethit und Sulfid in der Anwesenheit von Fe(II) und NOM. Zudem, konnte anhand der Disproportionierung von Schwefel im Goethit/Fe(II)-System nicht nur das hohe Reduktionspotential von Fe(II)sorb, sondern auch das Oxidationspotential von Fe(III)-Oberflächenspezies unter anoxischen Bedingungen gezeigt werden. Somit helfen die Ergebnisse der vorgestellten Arbeit, das Verständnis über geochemische Prozesse zu verbessern und somit möglicherweise Techniken für den Schadstoffabbau in anoxischen Grundwassersystemen zu entwickeln.
 
Dissertation ist gesperrt bis 12. Februar 2021 !
 

Abstract:

The interaction between iron oxides and aqueous sulfide is an important biogeochemical process under anoxic water conditions, controlling in the cycling of iron and sulfur in natural system. In anoxic aquatic systems, Fe(II) and natural organic matter (NOM) are ubiquitously present. Little is known, however, how and to what extent Fe(II) and NOM affect the interactions between iron oxides and aqueous sulfide. Therefore, the role of Fe(II) and NOM on the redox reactions between iron oxides and sulfide was investigated in this thesis. The presence and speciation of Fe(II) strongly affected the pathways, rates and products of reactions between goethite and aqueous sulfide. In the absence of Fe(II) the redox reaction between structural Fe(III) of goethite and sulfide was significant and gave high yields of elemental sulfur. When suspended goethite completely adsorbed aqueous Fe(II) (Fe(II)aq), the oxidation of sulfide was severely inhibited. In the presence of significant concentrations of both Fe(II)sorb and Fe(II)aq, however, the oxidation of sulfide to elemental sulfur occurred. It is proposed that under such conditions, sulfide reacted with Fe(III) surface species that dynamically formed. The presence of Fe(II)aq is required to renew Fe(II)sorb species that partially inject electrons into bulk goethite thereby being oxidized to reactive Fe(III) at the goethite surface. Thus, the significant reaction between sulfide and goethite in the presence of Fe(II)aq was attributed to the continuous regeneration of reactive Fe(III) species at goethite surface. The presence of Aldrich humic acid (AHA) inhibited the redox reaction between sulfide with goethite due to its sorption at goethite surface, leading to a lower amount of transformation products. Within the range of applied AHA concentrations (10 mg C/L – 40 mg C/L), the coating effect of AHA played the major role in the whole reaction process, while, the redox state of AHA was insignificant. Furthermore, a small fraction of sulfide was incorporated into the AHA structure, which also contributed to the inhibition of the reaction of sulfide with goethite. The reduction of elemental sulfur by Fe(II)sorb at goethite surface was investigated at neutral pH under anoxic conditions. It was found that parallel to the reduction of S0 to sulfide by Fe(II)sorb and subsequent formation of FeS and polysulfides, S0 also was oxidized to sulfate. The occurrence of sulfur oxidation suggested the presence of reactive surface Fe(III) species. The findings of this thesis can help us to improve our understanding of the geochemical interactions in natural anoxic waters, thus eventually enabling us to apply these findings to develop techniques of pollutant transformation in anoxic groundwater systems.

This item appears in the following Collection(s)