Probabilistic Approaches to Stochastic Optimization

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Hennig, Philipp (Prof. Dr.)
dc.contributor.author Mahsereci, Maren
dc.date.accessioned 2018-11-09T08:01:20Z
dc.date.available 2018-11-09T08:01:20Z
dc.date.issued 2018-11-09
dc.identifier.other 512746435 de_DE
dc.identifier.uri http://hdl.handle.net/10900/84726
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-847264 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-26116
dc.description.abstract Optimization is a cardinal concept in the sciences, and viable algorithms of utmost importance as tools for finding the solution to an optimization problem. Empirical risk minimization is a major workhorse, in particular in machine learning applications, where an input-target relation is learned in a supervised manner. Empirical risks with high-dimensional inputs are mostly optimized by greedy, gradient-based, and possibly stochastic optimization routines, such as stochastic gradient descent. Though popular, and practically successful, this setup has major downsides which often makes it finicky to work with, or at least the bottleneck in a larger chain of learning procedures. For instance, typical issues are: • Overfitting of a parametrized model to the data. This generally leads to poor generalization performance on unseen data. • Tuning of algorithmic parameters, such as learning rates, is tedious, inefficient, and costly. • Stochastic losses and gradients occur due to sub-sampling of a large dataset. They only yield incomplete, or corrupted information about the empirical risk, and are thus difficult to handle from a decision making point of view. This thesis consist of four conceptual parts. In the first one, we argue that conditional distributions of local full and mini-batch evaluations of losses and gradients can be well approximated by Gaussian distributions, since the losses themselves are sums of independently and identically distributed random variables. We then provide a way of estimating the corresponding sufficient statistics, i. e., variances and means, with low computational overhead. This yields an analytic likelihood for the loss and gradient at every point of the inputs space, which subsequently can be incorporated into active decision making at run-time of the optimizer. The second part focuses on estimating generalization performance, not by monitoring a validation loss, but by assessing if stochastic gradients can be fully explained by noise that occurs due to the finiteness of the training dataset, and not due to an informative gradient direction of the expected loss (risk). This yields a criterion for early-stopping where no validation set is needed, and the full dataset can be used for training. The third part is concerned with fully automated learning rate adaption for stochastic gradient descent (SGD). Global learning rates are arguably the most exposed manual tuning parameters of stochastic optimization routines. We propose a cheap and self-contained sub-routine, called a ‘probabilistic line search’ that automatically adapts the learning rate in every step, based on a local probability of descent. The result is an entirely parameter-free, stochastic optimizer that reaches comparable or better generalization performances than SGD with a carefully hand-tuned learning rate on the tested problems. The last part deals with noise-robust search directions. Inspired by classic first- and second-order methods, we model the unknown dynamics of the gradient or Hessian-function on the optimization path. The approach has strong connections to classic filtering frameworks and can incorporate noise-corrupted evaluations of the gradient at successive locations. The benefits are twofold. Firstly, we gain valuable insight on less accessible or ad-hoc design choices of classic optimizer as special cases. Secondly, we provide the basis for a flexible, self-contained, and easy-to-use class of stochastic optimizers that exhibit a higher degree of robustness and automation. en
dc.description.abstract Optimierung ist ein grundlegendes Prinzip in denWissenschaften, und Algorithmen zu deren Lösung von großer praktischer Bedeutung. Empirische Risikominimierung ist ein gängiges Modell, vor allem in Anwendungen des Maschinellen Lernens, in denen eine Eingabe-Ausgabe Relation überwacht gelernt wird. Empirische Risiken mit hoch-dimensionalen Eingaben werden meist durch gierige, gradientenbasierte, und möglicherweise stochastische Routinen optimiert, so wie beispielsweise der stochastische Gradientenabstieg. Obwohl dieses Konzept populär als auch erfolgreich in der Praxis ist, hat es doch beträchtliche Nachteile, die es entweder aufwendig machen damit zu arbeiten, oder verlangsamen, sodass es den Engpass in einer größeren Kette von Lernprozessen darstellen kann. Typische Verhalten sind zum Beispiel: • Überanpassung eines parametrischen Modells an die Daten. Dies führt oft zu schlechterer Generalisierungsleistung auf ungesehenen Daten. • Die manuelle Anpassung von algorithmischen Parametern, wie zum Beispiel Lernraten ist oft mühsam, ineffizient und kostspielig. • Stochastische Verluste und Gradienten treten auf, wenn Zufallsstichproben anstelle eines ganzen großen Datensatzes für deren Berechnung benutzt wird. Erstere stellen nur inkomplette, oder korrupte Information über das empirische Risiko dar und sind deshalb schwieriger zu handhaben, wenn ein Algorithmus Entscheidungen treffen soll. Diese Arbeit enthält vier konzeptionelle Teile. Im ersten Teil argumentieren wir, dass bedingte Verteilungen von lokalen Voll- und Mini-Batch Verlusten und deren Gradienten gut mit Gaußverteilungen approximiert werden können, da die Verluste selbst Summen aus unabhängig und identisch verteilten Zufallsvariablen sind. Wir stellen daraufhin dar, wie man die suffizienten Statistiken, also Varianzen und Mittelwerte, mit geringem zusätzlichen Rechenaufwand schätzen kann. Dies führt zu analytischen Likelihood-Funktionen für Verlust und Gradient an jedem Eingabepunkt, die daraufhin in aktive Entscheidungen des Optimierer zur Laufzeit einbezogen werden können. Der zweite Teil konzentriert sich auf die Schätzung der Generalisierungsleistung nicht indem der Verlust eines Validierungsdatensatzes überwacht wird, sondern indem beurteilt wird, ob stochastische Gradienten vollständig durch Rauschen aufgrund der Endlichkeit des Trainingsdatensatzes und nicht durch eine informative Gradientenrichtung des erwarteten Verlusts (des Risikos), erklärt werden können. Daraus wird ein Early-Stopping Kriterium abgeleitet, das keinen Validierungsdatensatz benötigt, sodass der komplette Datensatz für das Training verwendet werden kann. Der dritte Teil betrifft die vollständige Automatisierung der Adaptierung von Lernraten für den stochastischen Gradientenabstieg (SGD). Globale Lernraten sind wohl die prominentesten Parameter von stochastischen Optimierungsroutinen, die manuell angepasst werden müssenWir stellen eine günstige und eigenständige Subroutine vor, genannt ’Probabilistic Line Search’, die automatisch die Lernrate in jedem Schritt, basierend auf einer lokalen Abstiegswahrscheinlichkeit, anpasst. Das Ergebnis ist ein vollständig parameterfreier stochastischer Optimierer, der vergleichbare oder bessere Generalisierungsleistung wie SGD mit sorgfältig von Hand eingestellten Lernraten erbringt. Der letzte Teil beschäftigt sich mit Suchrichtungen, die robust gegenüber Rauschen sind. Inspiriert von klassischen Optimierern erster und zweiter Ordnung, modellieren wir die Dynamik der Gradienten oder Hesse-Funktion auf dem Optimierungspfad. Dieser Ansatz ist stark verwandt mit klassischen Filter-Modellen, die aufeinanderfolgende verrauschte Gradienten berücksichtigen können Die Vorteile sind zweifältig. Zunächst gewinnen wir wertvolle Einsichten in weniger zugängliche oder ad hoc gewählte Designs klassischer Optimierer als Spezialfälle. Zweitens bereiten wir die Basis für flexible, eigenständige und nutzerfreundliche stochastische Optimierer mit einem erhöhten Grad an Robustheit und Automatisierung. de_DE
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Maschinelles Lernen de_DE
dc.subject.ddc 004 de_DE
dc.subject.other Stochastic Optimization en
dc.subject.other Gaussian Processes en
dc.subject.other Learning Rates en
dc.subject.other Probabilistic Models en
dc.title Probabilistic Approaches to Stochastic Optimization en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2018-07-23
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige