Entwicklung und Aufbau hybrider Quantensysteme für Quantencomputing und Metrologie

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Fortágh, József (Prof. Dr.)
dc.contributor.author Jessen, Florian Peter
dc.date.accessioned 2018-07-09T09:26:42Z
dc.date.available 2018-07-09T09:26:42Z
dc.date.issued 2020-07-26
dc.identifier.other 1725601656 de_DE
dc.identifier.uri http://hdl.handle.net/10900/83004
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-830042 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-24395
dc.description.abstract Die Verknüpfung von Qubits gehört zu den aktuellen Herausforderungen der Quantentechnologie. Dies betrifft einerseits Systeme, die weit voneinander entfernt sind, als auch hybride Systeme, in denen unterschiedliche Realisierungen der Qubits ihre individuellen Stärken ausspielen und anschließend den Quantenzustand auf einen anderen Typ übertragen sollen. In dieser Arbeit wird ein Mischcryostat vorgestellt, der Supraleiter auf Temperaturen unterhalb hundert Millikelvin abkühlen kann und zugleich eine Apparatur zur Präparation von ultrakalten Atomen enthält. Es konnte gezeigt werden, dass es möglich ist, ultrakalte Atomwolken in dieser Umgebung zu präparieren und zu manipulieren. Im nächsten Schritt müssen die Atomwolken in die Millikelvin-Umgebung transportiert und an einen Chip mit funktionalen supraleitenden Elementen herangeführt werden. Zwar steht die Demonstration des Austausches von Quanteninformation noch aus, dennoch stellt dies einen bedeutenden Schritt in Richtung eines hybriden Quantensystems dar. Es ist von zentraler Bedeutung, den Wärmeeintrag in die Millikelvinumgebung zu minimieren. Gleichzeitig erfordern die typischen magnetischen Fallenpotentiale Ströme im Bereich einiger Ampere. Konventionelle Spulen aus supraleitenden Drähten erzeugen zwar keine Heizleistung, allerdings verbleibt ein Wärmeeintrag durch Wärmeleitung. Einen Ausweg bieten geschlossene supraleitende Schleifen, die von einem permanenten Strom durchflossen werden. In dieser Arbeit wurde die Idee der Baseball-Falle aufgegriffen, die mit einem einzelnen Strompfad eine vollständige Falle realisiert. Dies wurde in einem zweiten System mit einer supraleitenden Schleife umgesetzt. Eine zusätzlich angebrachte konventionelle Spule koppelt magnetischen Fluss in die Schleife ein, wodurch der permanente Strom moduliert werden kann. Diese Spule kann sich an einer anderen Temperaturstufe des Cryostaten befinden, so dass auch die Wärmeleitung unterbunden wird. Als Vermittler zwischen unterschiedlichen Qubits können Rydberg-Atome eine Schlüsselrolle einnehmen, da ihr Anregungsspektrum einen weiten Frequenzbereich überdeckt. Ihre Sensitivität gegenüber elektrischen Feldern erfordert allerdings eine sorgfältige Betrachtung der Umgebung und ggf. eine Abschirmung oder Kompensation der Störfelder. In der vorliegenden Arbeit wurde ein Referenzsystem aufgebaut, an dem die absoluten Übergangsfrequenzen mit verbesserter Genauigkeit ermittelt und der Einfluss externer Felder untersucht wurden. Auf dieser Basis können nun die Korrekturen vorgenommen werden. Als Referenz für die Frequenzmessungen dient bislang ein Mikrowellenübergang. Verwendet man stattdessen einen optischen Übergang, so wird die Zeit in kleinere Abschnitte unterteilt und somit die Unsicherheit reduziert. Diese optischen Uhren aus neutralen Atomen haben bislang den Nachteil, dass die Messung destruktiv erfolgt. Durch die erneute Präparation steht die Uhr nur einen Bruchteil der Zeit zur Verfügung. Hier wurde ein Konzept erarbeitet, das den Betrieb einer kontinuierlichen optischen Uhr ermöglichen soll. Die erste Stufe der Präparation eines Ensembles ultrakalter Atome konnte bereits demonstriert werden. Im weiteren Verlauf ist eine zweite Präparationsstufe, sowie eine Spektroskopie erforderlich. Letztendlich ist die Anbindung des bestehenden Frequenzkamms geplant, um die erhöhte Genauigkeit auch auf andere Frequenzbereiche zu übertragen. Die erzielten Erkenntnisse tragen zur Weiterentwicklung der Quantentechnologien bei. Einerseits bieten sie die Perspektive Quanteninformationsverarbeitung mit hybriden Systemen aus Supraleitern und ultrakalten Atomen durchzuführen. Dabei kann die optische Schnittstelle mehrere derartige Systeme auch über große Entfernungen miteinander verknüpfen und so die Vision eines Quanten-Internets wahr werden lassen. Optische Uhren werden in absehbarer Zeit die Cäsium-Uhren zur Definition der Sekunde ablösen. Ihre hohe Sensitivität lässt neue Anwendungen in der Metrologie, Geodäsie oder auch Astronomie erwarten. de_DE
dc.language.iso de de_DE
dc.publisher Universität Tübingen de_DE
dc.subject.classification Quantencomputer de_DE
dc.subject.ddc 530 de_DE
dc.subject.other hybride Quantensysteme de_DE
dc.subject.other optische Uhr de_DE
dc.subject.other Rydbergatome de_DE
dc.subject.other Mischcryostat de_DE
dc.title Entwicklung und Aufbau hybrider Quantensysteme für Quantencomputing und Metrologie de_DE
dc.type PhDThesis de_DE
dcterms.dateAccepted 2018-06-22
utue.publikation.fachbereich Physik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige