dc.contributor.advisor |
Grosse-Wentrup, Moritz (Dr.) |
|
dc.contributor.author |
Fomina, Tatiana |
|
dc.date.accessioned |
2017-04-27T06:37:24Z |
|
dc.date.available |
2017-04-27T06:37:24Z |
|
dc.date.issued |
2017-04-26 |
|
dc.identifier.other |
487015231 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/75987 |
|
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-759870 |
de_DE |
dc.identifier.uri |
http://dx.doi.org/10.15496/publikation-17389 |
|
dc.description.abstract |
Electroencephalographic (EEG) brain-Computer Interfaces (BCIs) hold promise
to restore communication with completely locked-in (CLIS) patients with Amy-
otrophic Lateral Sclerosis (ALS). However, these patients cannot use existing EEG-
based BCIs, possibly because such systems rely on brain processes that are im-
paired in ALS. We propose to use for BCI for ALS patients high cognitive processes
connected to consciousness, because ALS patients should be able to use such BCI
as long as they are fully conscious. We introduce a BCI based on neurofeedback
from precuneus, brain area linked to consciousness. We describe two cases of
successful use of the BCI by ALS patients, with stable online performance over
the course of disease progression. Additionally, we show that training time can
be improved by replacing the neurofeedback with direct instructions, contrasting
self-referential and neutral thoughts. We further investigate self-referential think-
ing in ALS and find differences in the EEG correlates of self-referential thinking
between ALS and healthy controls. This finding raises the question of awareness
and consciousness in CLIS ALS. We propose a method that may serve as basis
for consciousness detection in CLIS ALS patients: EEG-based identification of
the Default Mode Network (DMN), brain resting-state network closely linked to
consciousness. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-podok |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
en |
dc.subject.classification |
Myatrophische Lateralsklerose , Elektroencephalogramm |
de_DE |
dc.subject.ddc |
570 |
de_DE |
dc.subject.ddc |
610 |
de_DE |
dc.subject.other |
Brain-Computer Interface |
en |
dc.title |
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis |
en |
dc.type |
PhDThesis |
de_DE |
dcterms.dateAccepted |
2017-03-13 |
|
utue.publikation.fachbereich |
Medizin |
de_DE |
utue.publikation.fakultaet |
4 Medizinische Fakultät |
de_DE |