A large-scale computational framework for comparative analyses in population genetics and metagenomics

DSpace Repository


Dateien:

URI: http://hdl.handle.net/10900/69525
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-695255
http://dx.doi.org/10.15496/publikation-10939
Dokumentart: Dissertation
Date: 2016-05-09
Source: Partially published in: Bioinformatics, 30(22), 2014, 3264-5
Language: English
Faculty: 7 Mathematisch-Naturwissenschaftliche Fakultät
7 Mathematisch-Naturwissenschaftliche Fakultät
Department: Informatik
Biologie
Advisor: Weigel, Detlef (Prof. Dr.)
Day of Oral Examination: 2016-05-04
DDC Classifikation: 004 - Data processing and computer science
570 - Life sciences; biology
Keywords: Bioinformatik , Populationsgenetik , Paralleler Algorithmus
Other Keywords:
metagenomics
multiple genome representation
sequencing error corrector
whole genome aligner
structural variant caller
taxonomy classifier
License: Publishing license including print on demand
Order a printed copy: Print-on-Demand
Show full item record

Inhaltszusammenfassung:

In der Populationsgenetik werden die räumlichen und zeitlichen Verteilungen von genetischen Varianten in Individuen einer Population untersucht. Über die Generationen ändert sich die Frequenz von Genen und Allelen. Die Auswirkungen der durch diese evolutionären Mechanismen gebildete Diversität zeigt sich auf verschiedenen Stufen biologischer Organisation, von einzelnen Molekülen bis hin zu gesamten Organismen. Sind Eigenschaften betroffen welche einen Einfluss auf die Überlebens- und Reproduktionsrate haben, werden die zugrundeliegenden Allele mit höherer Wahrscheinlichkeit in die nachfolgende Generation übetragen werden. Allele mit positiver Auswirkungen auf die Fitness eines Organismus könnten sich so in einer Population verbreiten. Zufällige Mutationen sind eine Quelle für neue Allele in einer Population. Die zugrundeliegenden Veränderungen der DNA-Sequenzen können durch Fehler bei der DNA-Replikation oder von DNA-Reparaturmechanismen, sowie Insertionen und Deletionen von mobilen genetischen Elementen entstehen. In sich sexuell fortpflanzenden Organismen sorgt genetische Rekombination für eine Vermischung der Allele auf den Chromosomen. Obwohl die Allelfrequenzen nicht verändert werden, entstehen dadurch neue Kombinationen von Allelen. Auf der molekularen Ebene können Genloci durch Mutationen an Aktivität gewinnen oder funktionslos werden, was wiederum eine Auswirkung auf den entstehenden Phänotyp und die Überlebensfähigkeit des Organismus hat. Trotz der höherer Verbreitung neutraler Mutationen, kann das Ansammeln von kleinen Veränderungen im Laufe der Zeit die Fitness beeinflussen und weiter der Evolution beitragen. Das Ziel dieser Arbeit war es ein Rahmenwerk für die vergleichende Analyse großer genomischer Datensets zur Verfügung zu stellen. Im Besonderen für Datensätze mit vielen Individuen einer Spezies wie im 1001 Genomes Project (Arabidopsis thaliana), im 1000 Genomes Project (Homo sapiens) sowie in metagenomische Datensätzen. Für die folgenden Problemstellungen wurden Algorithmen entwickelt: 1) Fehlerkorrektur und Verbesserung der effektiven Coverage von genomischen Rohdaten (Trowel), 2) multiple Gesamt-Genomalinierungen (whole genome alignments; WGAs) und die Detektion kleiner Unterschiede innerhalb einer Population (Kairos), 3) Identifikation struktureller Varianten (SV) (Apollo), und 4) Klassifikation von Mikroorganismen in metagenomischen Datensätzen (Poseidon). Diese Algorithmen nehmen keine Interpretation biologischer Rohdaten vor sondern stellen Ausgangspunkte für biologische Hypothesen zur Verfügung. Auf Grund der Fortschritte in verteiltem und paralellem Rechnen nutzen viele moderne Bioinformatikalgorithmen Paralellisierung auf CPUs oder GPUs. Diese erhöhte Rechenkapazität erlaubt es uns größere und komplexere Probleme zu lösen. Allerdings machen diese technische Fortschritte allein es noch nicht möglich, sehr große Datensätze zu nutzen und bringen auch keine Antworten auf biologische Fragen. Um von diesen Fortschritten zu profitieren und hochqualitative Informationen aus Rohdaten extrahieren zu können, sind gut durchdachte Datenstrukturen und Algorithmen notwendig. Für die Populationsgenetik sollte eine effiziente Repräsentation eines Pan-Genoms und dazugehöriger Formeln geschaffen werden. Zusätzlich zu einer solchen Repräsentation spielen Sequenzalalinierungen eine entscheidende Rolle im Lösen biologischer Probleme wie der Berechnung von Allelfrequenzen, der Detektion seltener Varianten, der Assoziation von Genotypen und Phänotypen und Inferenz von Kausalität bezüglich bestimmter Krankheiten. Um Mutationen in einer Population zu detektieren wird die konventionelle Alinierungsmethode verbessert da mehrere Genome gleichzeitig aliniert werden. Obwohl die Anzahl vollständiger Genomsequenzen stetig gestiegen ist, ist die Analyse dieser großen und komplexen Datensätze immer noch schwierig. Die Hochdurchsatz-Sequenzierung (Next Generation Sequencing; NGS), die ein präziseres und detaillierteres Bild der Genomik geliefert hat, ist einer der großen Fortschritte in der Biotechnologie. Die Länge und Genauigkeit der Sequenzier-Abschnitte (Reads) hat sich so weit verbessert, dass in Zukunft wahrscheinlich ein vollständiges Genom von nur einer einzelnen Zelle als Ausgangsmaterial rekonstruiert werden kann. Obwohl die wichtigsten Schritte zur Realisierung von Sequenzierungsfortschritten eine Domäne der Verfahrenstechnik sind, haben auch die Informatik und Computertechnik die Qualität der Sequenzen entscheidend beeinflusst. Sequenzierdaten enthalten Fehler in Form von Substitutionen, Insertionen oder Deletionen von Nukleotiden. Außerdem ist die Länge der erzeugten Reads deutlich kürzer als die eines vollständigen Genoms. Diese Schwierigkeiten können durch Fehlerkorrekturen und Genomassemblierung verringert werden, wodurch nachfolgende Analysen genauer werden. Programme zur Alinierung kurzer Reads waren bisher die wichtigste Methode um genetische Mutationen zu detektieren. Da nun duch neue Technologien häufig längere Reads oder auch Contigs verfügbar sind, werden Kartierungsmethoden benötigt die sich an langen Ähnlichkeiten orientieren und sich nicht von kurzen lokalen Übereinstimmungen fehlleiten lassen. Die Parameter für Programme zur Alinierung von kurzen Reads welche nichtübereinstimmende Basen und das Eröffnen und Verlängern von Lücken bestrafen, sind nicht direkt auf die Alinierung längerer Reads anwendbar. Alternativ können WGA-Algorithmen verwendet werden, die das Alinierungsproblem in einem längeren Kontext lösen und dadurch essentielle Daten für vergleichende Studien liefern. Allerdings haben bisherige WGA-Algorithmen noch Probleme in der praktischen Anwendung für die Populationsgenetik wegen ihrer hohen Zeit- und Speicherkomplexität. Außerdem wurde der Definition idealer Datenformate für Anwendungen der komparativen Genomik nur wenig Aufmerksamkeit gewidmet. Um Datensätze großer Populationen verarbeiten zu können sollten Algorithmen für multiple Sequenzalinierung (MSA) mit WGA-Methoden zur multiplen Gesamtgenomalinierung (MWGA) kombiniert werden. Obwohl bereits viele MWGA-Methoden vorgestellt wurden, wurde ihre Genauigkeit noch nicht aussagekräftig überprüft. Vielmehr lieferten Qualitätskontrollen sehr unterschiedliche Ergebnisse, abhängig von der Auswahl von Organismen und verwendeten Sequenzen. Ein noch größeres Problem ist die ungenaue Beschreibung von Experimenten zur Messung der Funktionalität von MWGA-Methoden. Daher war es schwierig die multiplen Alinierungs-Ergebnisse zu interpretieren. Ich beschreibe in dieser Arbeit eine deutlich umfassendere Methode um die Genauigkeit eines MWGA-Algorithmus zu bestimmen. Sie macht von vorab bekannten Positionen der Varianten Gebrauch wozu Simulationen und standardisierte Statistiken herangezogen werden. Die Metagenomik untersucht die genetische Zusammensetzung einer (oft hauptsächlich mikrobiellen) natürlichen Organismen-Gemeinschaft. Sie ist unabhängig von der Kultivierung einzelner Mikroben und liefert auch quantitative Informationen zur Zusammensetzung der Gemeinschaft. Während Proben aus der Umwelt ein natürlicheres Ausgangsmaterial liefern ist gleichzeitig auch die Komplexität der Analysen deutlich höher: die Anzahl der enthaltenen Arten kann sehr groß sein, so dass nur ein Bruchteil der Genome tatsächlich analysiert wird. Ich stelle einen Algorithmus vor, Poseidon, der Reads zur taxonomischen Identifikation mit Arten-genauer Auflösung zuordnet und damit hilft deren relative Häufigkeit in einer Probe zu quantifizieren. Die Interaktionen zwischen Bakterien kann Konflikte und auch Kooperationen hervorrufen. Die spezielle Mischung unterschiedlicher Artem kann daher eine Reihe funktionaler Anpassungen an eine bestimmte Umgebung aufzeigen. Die Zusammensetzung der Arten könnte durch biotische oder abiotische Faktoren verändert werden, was im Kontext eines Krankheitsbildes zu einer Veränderung der Anfälligkeit eines Wirts bezüglich eines bestimmten Erregers führen kann. Daher sind die genaue Quantifizierung von Arten und die Entschlüsselung ihrer funktionalen Rolle in einer bestimmten Umgebung grundlegend für metagenomische Studien. Zusammenfassend stelle ich in dieser Arbeit fortgeschrittene bioinformatische Methoden, Trowel, Kairos, Apollo und Poseidon vor. Trowel korrigiert Fehler in Sequenzabschnitten mit Hilfe von k-mer Informationen von hoher Qualität. Kairos führt die Alinierung einer Sequenz zu multiplen Genomen einer Art durch. Apollo charakterisiert genomweit genetische Varianten basierend auf den Alinierungen von Kairos, und erfasst sowohl Punktmutationen als auch große strukturelle Varianten. Poseidon ordnet metagenomische Datensätze taxonomischen Identifikatoren zu. Auch wenn keine spezifischen biologischen Fragestellungen beantwortet werden, wird die Basis für zukünftige Fragen geschaffen.

Abstract:

Population genetics is the study of spatio-temporal genetic variants among individuals. Its purpose is to understand evolution: the change in frequency of alleles over time. The effects of these alleles are expressed on different levels of biological organization, from molecular com-plexes to entire organisms. Eventually, they will affect traits that can influence the survival and reproduction of organisms. Fitness is a probability of transferring alleles to subsequent genera-tions with respect to successful survival and reproduction. Due to differential fitness, any phe-notypic properties that confer beneficial effects on survival and reproduction may presumably become prevalent in a population. Random mutations introduce new alleles in a population. The underlying changes in DNA sequences can be caused by replication errors, failures in DNA repair processes, or insertion and deletion of transposable elements. For sexual organisms, genetic recombination randomly mixes up the alleles in chromosomes, in turn, yielding a new composition of alleles though it does not change the allele frequencies. On the molecular level, mutations on a set of loci may cause a gain or loss of function resulting in totally different phenotypes, hereby influencing the survival of an organism. Despite the dominance of neutral mutations, the accumulation of small changes over time may affect the fitness, and further contribute to evolution. The goal of this study is to provide a framework for a comparative analysis on large-scale genomic datasets, especially, of a population within a species such as the 1001 Genomes Project of Arabidopsis thaliana, the 1000 Genomes Project of humans, or metagenomics datasets. Algo-rithms have been developed to provide following features: 1) denoising and improving the ef-fective coverage of raw genomic datasets (Trowel), 2) performing multiple whole genome alignments (WGAs) and detecting small variations in a population (Kairos), 3) identifying struc-tural variants (SVs) (Apollo), and 4) classifying microorganisms in metagenomics datasets (Po-seidon). The algorithms do not furnish any interpretation of raw genomic data but provide anal-yses as basis for biological hypotheses. With the advances in distributed and parallel computing, many modern bioinformatics algo-rithms have come to utilize multi-core processing on CPUs or GPUs. Having increased computa-tional capacity allows us to solve bigger and more complex problems. However, such hardware advances do not spontaneously give rise to the improved utilization of large-size datasets and do not bring insights by themselves to biological questions. Smart data structures and algorithms are required in order to exploit the enhanced computing power and to extract high quality infor-mation. For population genetics, an efficient representation for a pan genome and relevant for-mulas should be manifested. On top of such representation, sequence alignments play pivotal roles in solving biological problems such that one may calculate allele frequencies, detect rare variants, associate genotypes to phenotypes, and infer causality of certain diseases. To detect mutations in a population, the conventional alignment method is enhanced as multiple genomes are simultaneously aligned. The number of complete genome sequences has steadily increased, but the analysis of large, complex datasets remains challenging. Next Generation Sequencing (NGS) technology is consid-ered one of the great advances in modern biology, and has led to a dramatically more precise and detailed understanding of genomes and their activities. The contiguity and accuracy of se-quencing reads have been improving so that a complete genome sequence of a single cell may become obtainable from a sequencing library in the future. Though chemical and optical engi-neering are main drivers to advance sequencing technology, informatics and computer engineer-ing have significantly influenced the quality of sequences. Genomic sequencing data contain errors in forms of substitution, insertion, and deletion of nucleotides. The read length is far shorter than a given genome. These problems can be alleviated by means of error corrections and genome assemblies, leading to more accurate downstream analyses. Short read aligners have been the key ingredient for measuring and observing genetic muta-tions using Illumina sequencing technology, the dominant technology in the last decade. As long reads from newer methods or assembled contigs become accessible, mapping schemes capturing long-range context, but not lingering in local matches should be devised. Parameters for short read aligners such as the number of mismatches, gap-opening and -extending penalty are not directly applicable to long read alignments. At the other end of the spectrum, whole genome aligners (WGA) attempt to solve the alignment problem in a much longer context, providing es-sential data for comparative studies. However, available WGA algorithms are not yet optimized concerning practical uses in population genetics due to high computing demands. Moreover, too little attention has been paid to define an ideal data format for applications in comparative ge-nomics. To deal with datasets representing a large population of diverse individuals, multiple se-quence alignment (MSA) algorithms should be combined with WGA methods, known as multi-ple whole genome alignment (MWGA). Though several MWGA algorithms have been proposed, the accuracy of algorithms has not been clearly measured. In fact, known quality assessment tools have yielded highly fluctuating results dependent on the selection of organisms, and se-quencing profiles. Of even more serious concern, experiments to measure the performance of MWGA methods have been only ambiguously described. In turn, it has been difficult to inter-pret the multiple alignment results. With known precise locations of variants from simulations and standardized statistics, I present a far more comprehensive method to measure the accuracy of a MWGA algorithm. Metagenomics is a study of the genetic composition in a given community (often, predomi-nantly microbial). It overcomes the limitation of having to culture each organism for genome sequencing and also provides quantitative information on the composition of a community. Though an environmental sample provides more natural genetic material, the complexity of analyses is greatly increased. The number of species can be very large and only small portions of a genome may be sampled. I provide an algorithm, Poseidon, classifying sequencing reads to taxonomy identifiers at a species resolution and helping to quantify their relative abundances in the samples. The interactions among individual bacteria in a certain population can result in both conflict and cooperation. Thus, a mixture of diverse bacteria species shows a set of functional adaptations to a particular environment. The composition of species would be changed by dis-tinct biotic or abiotic factors, which may lead to a successive alteration in susceptibility of a host to a certain disease. In turn, basic concerns for a metagenomics study are an accurate quantifica-tion of species and deciphering their functional role in a given environment. In summary, this work presents advanced bioinformatics methods: Trowel, Kairos, Apollo, and Poseidon. Trowel corrects sequencing errors in reads by utilizing a piece of high-quality k-mer information. Kairos aligns query sequences against multiple genomes in a population of a single species. Apollo characterizes genome-wide genetic variants from point mutations to large structural variants on top of the alignments of Kairos. Poseidon classifies metagenomics datasets to taxonomy identifiers. Though the work does not directly address any specific biological ques-tions, it would provide preliminary materials for further downstream analyses.

This item appears in the following Collection(s)