Design eines proteinfreisetzenden 3D-Trägermaterials für den Einsatz in der kardiovaskulären regenerativen Medizin

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/68504
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-685043
http://dx.doi.org/10.15496/publikation-9923
Dokumentart: Dissertation
Erscheinungsdatum: 2016
Originalveröffentlichung: Schesny, M.K., Monaghan M., Bindermann, A. H., Freund, D., Seifert, M., Eble, J. A., Vogel, S., Gawaz, M. P., Hinderer, S., Schenke-Layland, K. Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels. Biomaterials, 2014. 35(25): p. 7180-7. [DOI: 10.1016/j.biomaterials.2014.04.116] Hinderer S., Schesny M., Bayrak, A.Ibold, B., Hampel, M., Walles, T., Stock, U. A., Seifert, M., Schenke-Layland, K. Engineering of fibrillar decorin matrices for a tissue-engineered trachea). Biomaterials, 2012. 33(21): p. 5259-66. [DOI: 10.1016/j.biomaterials.2012.03.075]
Sprache: Deutsch
Fakultät: 4 Medizinische Fakultät
4 Medizinische Fakultät
Fachbereich: Medizin
Gutachter: Schenke-Layland, Katja (Prof. Dr.)
Tag der mündl. Prüfung: 2016-01-29
DDC-Klassifikation: 610 - Medizin, Gesundheit
Schlagworte: Biomaterial , Hydrogel , Wirkstofffreisetzung
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Gedruckte Kopie bestellen: Print-on-Demand
Zur Langanzeige

Inhaltszusammenfassung:

Die Entwicklung von Therapiestrategien zur Behandlung kardiovaskulärer Erkrankungen beinhaltet den Einsatz von zelltragenden sowie azellulären Biomaterialien im Tissue Engineering. Aufgaben der Biomaterialien bestehen in der Strukturstabilisierung des geschädigten Gewebes, der Verbesserung der Integration applizierter Zellen oder der Freisetzung bioaktiver Substanzen. In dieser in vitro Studie stellten wir zunächst dreidimensionale (3D-)Trägersubstrate mithilfe des Elektrospinnens aus drei unterschiedlichen Polymeren (Polylactid, Polylactid-co-Glycolid und Polyethylenglycol) her. Durch UV-vermittelte Fotopolymerisation konnten Hydrogele aus Polyethylenglycol diacrylate in Kombination mit dem Fotoinitiator Irgacure 2959 generiert werden. Ein Zellvitalitätstest zeigte, dass weder die elektrogesponnenen Trägermaterialien (ETM) noch die Hydrogele einen zytotoxischen Effekt auf murine Endothelprogenitorzellen unter den in dieser Studie vorhandenen Versuchsbedingungen zeigten. Das Einwachsen der Zellen in das 3D-Trägersubstrat konnte rasterelektronen-mikroskopisch nachgewiesen werden. Im nächsten Schritt untersuchten wir sowohl ETM als auch Hydrogele auf die Eignung als proteinfreisetzende Materialien. Die ETM zeigten hierbei nach Einsatz variierender Polymerkombinationen unterschiedliche Freisetzungsprofile des Proteins bovines Serumalbumin (BSA) mit einer im Vergleich zu den Hydrogelen langsamen Proteinfreisetzung. Die BSA-Freisetzung aus den Hydrogelen konnte als effektiv für einen Zeitraum von 7 Tagen identifiziert werden. Durch Variation der eingesetzten Fotoinitiatorkonzentration konnten steuerbare Freisetzungsprofile generiert werden. Nach Identifikation des gewünschten Freisetzungsprofils wurden zwei Proteine mit höherem Molekulargewicht (CD133-GPVI und SDF1-GPVI) im Hydrogel verkapselt und ihre Freisetzung beobachtet. Eine effektive Freisetzung beider bifunktionaler Proteine konnte anhand eines Enzyme-linked Immunsorbent Assays (ELISA) detektiert werden. Mithilfe eines weiteren ELISAs konnte die spezifische Bindung der Glykoprotein (GP)VI-Domäne an Kollagen Typ I nach Freisetzung bewiesen werden. Die fluoreszenz-mikroskopische Darstellung der Bindung der SDF1-Domäne an den Chemokinrezeptor 4 des CXCR-Motives auf humanen endothelialen kolonie-formenden Zellen zeigte zudem den Erhalt der Funktionalität der stromal cell-derived factor 1 (SDF1)-Domäne. Somit bestätigten wir den Erhalt beider funktioneller Domänen des Proteins SDF1-GPVI nach Freisetzung aus dem Hydrogel. Demnach zeigte der Herstellungsprozess keinen negativen Effekt auf die Funktionalität des Proteins. Durch Integration des ETM in die Oberfläche des Hydrogels konnten wir die Kombination beider Materialien als Hybrid-Biomaterial zeigen. Die Ergebnisse dieser in vitro Studie weisen auf das Potential des vorgestellten Hybrid-Biomaterials für den zukünftigen Einsatz als primär azelluläres Implantat in der kardiovaskulären regenerativen Medizin hin, welches sekundär im Organismus durch Freisetzung von bioaktiven Substanzen zu einer Zellbesiedlung und Verbesserung der Gefäßversorgung im umgebenden Gewebe führen kann.

Das Dokument erscheint in: