Experimental investigation of H2O degassing in silicate melts during magma ascent: A closer look at decompression experiments

DSpace Repository

Show simple item record

dc.contributor.advisor Nowak, Marcus (Prof. Dr.)
dc.contributor.author Marxer, Holger
dc.date.accessioned 2015-12-14T08:17:11Z
dc.date.available 2015-12-14T08:17:11Z
dc.date.issued 2015
dc.identifier.other 453325629 de_DE
dc.identifier.uri http://hdl.handle.net/10900/67107
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-671073 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-8527
dc.description.abstract Magma degassing during ascent can be simulated by decompression experiments with volatile-bearing silicate melts. Decompression-induced volatile supersaturation in the melt results in bubble nucleation and growth. H2O-bearing silicate melts were decompressed at super-liquidus conditions over a wide range of nominal decompression rates to investigate homogeneous bubble nucleation and further H2O degassing. The quenched samples document that the onset and extent of H2O degassing are highly sensitive to the experimental protocol. This study provides essential guidelines for the conduction of degassing experiments and the interpretation of the bubble-bearing samples. The bubble number density, porosity and residual H2O content in the melt are influenced by the starting material (glass powder or cylinder), decompression method (step-wise or continuous), sample size and run time of the experiment. A fundamentally important aspect is the consideration of the bubble volume reduction due to decreasing molar volume of the exsolved H2O during isobaric rapid quench. This quench effect must also be considered for the interpretation of bubble-bearing volcanic rocks in terms of magma porosity and ascent velocity. The bubble number densities of samples from optimized experiments are up to 5 orders of magnitude higher than modeled values. This may be attributed to the usage of (1) the macroscopic surface tension and/or (2) the diffusivity of total H2O instead of the diffusivity of network formers in models to describe the nucleation of bubbles at the molecular level. Improved models for homogeneous bubble nucleation on the basis of optimized experiments will contribute to a better understanding of the dynamic melt degassing processes that can trigger explosive volcanic eruptions. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podno de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.classification Silicatschmelze , Experiment , Entgasung , Blase de_DE
dc.subject.ddc 550 de_DE
dc.subject.other magma ascent en
dc.subject.other decompression experiment en
dc.subject.other silicate melt en
dc.subject.other degassing en
dc.subject.other H2O en
dc.subject.other bubble en
dc.title Experimental investigation of H2O degassing in silicate melts during magma ascent: A closer look at decompression experiments en
dc.type Dissertation de_DE
dcterms.dateAccepted 2015-11-13
utue.publikation.fachbereich Geographie, Geoökologie, Geowissenschaft de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE


This item appears in the following Collection(s)

Show simple item record