Abstract:
Soil erosion is a serious environmental problem in many parts of the world, especially in ecosystems with high anthropogenic influences. It is also a serious challenge in subtropical China, but forest stands mitigate soil loss rates in this area. Forests provide a multi-storey canopy layer which largely influences rain throughfall patterns as well as a leaf litter layer on the forest floor which protects the soil against direct raindrop impact and modifies the water flow and storage capacities. Nevertheless, only little research has been conducted on biodiversity and species effects on soil erosion control under forest stands. Furthermore, the processes within a protective leaf litter cover as well as the impact of soil mesofauna and macrofauna are not yet clear.
This thesis investigated the effects of species diversity, species identity, functional traits and soil fauna on soil erosion in subtropical forest ecosystems. It focused on interrill soil erosion rates determined by micro-scale ROPs under natural and simulated rainfall. Additionally, investigations with splash cups were carried out on changes in throughfall kinetic energy during the canopy passage of raindrops. Measurements took place in a forest biodiversity and ecosystem functioning experiment in the PR China (BEF China).
Results showed that tree species richness did not affect sediment discharge, runoff and TKE, although a negative trend was visible. This could be attributed to an absence of species richness effects on canopy characteristics in early successional forest stands. Nevertheless, stands with multiple species seemed to ensure a more balanced and homogenous soil cover. Furthermore, results showed that leaf litter species diversity did not influence the litter cover and thus soil erosion rates. Nonetheless, we could show that species identity influenced initial soil erosion processes under forest. That also applied to the leaf litter cover, where single leaf species showed significantly different influences on sediment discharge. Therefore, the appropriate choice of tree species during the establishment of plantations plays a major role in erosion control, even in young forest stages. Moreover, species-specific functional traits affected soil erosion rates. High crown cover and leaf area index reduced soil erosion, whereas it was slightly increased by increasing tree height. Investigations on the kinetic energy of raindrops showed that low LAI, low tree height, simple pinnate leaves, dentate leaf margins, a high number of branches and a low crown base height effectively minimized TKE. At last, the presence of soil mesofauna and macrofauna increased soil erosion and thus effects of this fauna group on sediment discharge have to be considered in soil erosion experiments.