Inhaltszusammenfassung:
Diese Arbeit konzentriert sich auf die Entwicklung von integrierten Systemen zur gleichzeitigen Lokalisierung und Kartierung (Simultaneous Localization and Mapping, SLAM) mit Hilfe visueller Sensoren, um die autonome Navigation von kleinen Luftfahrzeugen (Micro Aerial Vehicles, MAVs) zu ermöglichen. Dies ist noch immer ein anspruchsvolles Thema angesichts der meist begrenzten Nutzlast und Rechenleistung eines MAVs. Die dafür eingesetzten visuellen SLAM Systeme müssen sehr effizient zu sein, vor allem wenn parallel noch andere visuelle Aufgaben durchgeführt werden sollen. Darüber hinaus ist eine robuste Positionsschätzung sehr wichtig, um die sichere autonome Navigation des MAVs im dreidimensionalen (3D) Raum zu ermöglichen. Diese Herausforderungen motivieren die vorliegende Arbeit gemäß den folgenden Gesichtspunkten:
Zuerst wird das Problem bearbeitet, die Pose eines MAVs mit Hilfe einer künstlichen Markierung visuell zu schätzen. Ein künstliches neuronales Netz wird verwendet, um diese visuelle Markierung auch in anspruchsvollen Umgebungen zuverlässig zu erkennen. Anschließend wird ein Verfahren aus der projektiven Geometrie eingesetzt, um die relative Pose basierend auf der gemessenen Geometrie der visuellen Markierung zu ermitteln. Das vorgestellte Bildverarbeitungssystem kann nicht nur zur Regelung der Pose des MAVs verwendet werden, sondern auch genaue Posenschätzungen zur automatischen Initialisierung eines monokularen visuellen SLAM-Systems im Innen- und Außenbereich liefern.
Anschließend wird die autonome Landung eines MAVs auf einem beliebig texturierten Landeplatz während autonomer Navigation erreicht. Durch die Integration eines effizienten Objekterkennungsalgorithmus, basierend auf lokalen Bildmerkmalen in einem monokularen visuellen SLAM-System, ist das MAV in der Lage den Landeplatz autonom entlang einer vorgegebenen Strecke zu suchen, und auf ihm zu landen sobald er gefunden wurde. Die vorgestellte Lösung ermöglicht somit die autonome Navigation eines MAVs bei paralleler Landeplatzerkennung. Diese Lösung lockert die gängige Annahme in herkömmlichen Systemen zum kamerageführten Landen, dass der Landeplatz vor Beginn der Landung innerhalb des Sichtfelds des Bildverarbeitungssystems liegen muss.
Das dritte in dieser Arbeit bearbeitete Problem ist visuelles SLAM mit mehreren Kameras zur robusten Posenschätzung für MAVs. Aufgrund des begrenzten Sichtfelds von einer einzigen Kamera kann die Posenschätzung von monokularem visuellem SLAM leicht fehlschlagen, wenn sich das MAV in einer unbekannten Umgebung bewegt. Frühere Arbeiten versutchen dieses Problem hauptsächlich durch die Fusionierung von Informationen anderer Sensoren, z.B. eines Inertialsensors (Inertial Measurement Unit, IMU) zu lösen um eine höhere Robustheit des Gesamtsystems zu erreichen, was die Robustheit des visuellen SLAM-Systems selbst nicht verbessert. Die vorliegende Arbeit untersucht Lösungen zur Verbesserung der Robustheit der Posenschätzung eines visuellen SLAM-Systems durch die Verwendung mehrerer Kameras. Wie Messungen von mehreren Kameras in die Optimierung für visuelles SLAM integriert werden können wird mathematisch analysiert. Die daraus resultierende Theorie erlaubt die Nutzung dieser Messungen sowohl zur robusten Posenschätzung als auch zur Aktualisierung der visuellen Karte. Ferner wird ein solches visuelles SLAM-System mit mehreren Kameras modifiziert, um in konstanter Laufzeit robuste visuelle Odometrie zu berechnen. Die Integration dieser visuellen Odometrie mit einem effizienten Back-End zur Erkennung von geschlossener Schleifen und der Optimierung des Posengraphen ermöglicht ein visuelles SLAM-System mit mehreren Kameras und fast konstanter Laufzeit zur autonomen Navigation von MAVs in großen Umgebungen.
Abstract:
This thesis focuses on developing onboard visual simultaneous localization and mapping (SLAM) systems to enable autonomous navigation of micro aerial vehicles (MAVs), which is still a challenging topic considering the limited payload and computational capability that an MAV normally has. In MAV applications, the visual SLAM systems are required to be very efficient, especially when other visual tasks have to be done in parallel. Furthermore, robustness in pose tracking is highly desired in order to enable safe autonomous navigation of an MAV in three-dimensional (3D) space. These challenges motivate the work in this thesis in the following aspects.
Firstly, the problem of visual pose estimation for MAVs using an artificial landmark is addressed. An artificial neural network (ANN) is used to robustly recognize this visual marker in cluttered environments. Then a computational projective-geometry method is implemented for relative pose computation based on the retrieved geometry information of the visual marker. The presented vision system can be used not only for pose control of MAVs, but also for providing accurate pose estimates to a monocular visual SLAM system serving as an automatic initialization module for both indoor and outdoor environments.
Secondly, autonomous landing on an arbitrarily textured landing site during autonomous navigation of an MAV is achieved. By integrating an efficient local-feature-based object detection algorithm within a monocular visual SLAM system, the MAV is able to search for the landing site autonomously along a predefined path, and land on it once it has been found. Thus, the proposed monocular visual solution enables autonomous navigation of an MAV in parallel with landing site detection. This solution relaxes the assumption made in conventional vision-guided landing systems, which is that the landing site should be located inside the field of view (FOV) of the vision system before initiating the landing task.
The third problem that is addressed in this thesis is multi-camera visual SLAM for robust pose tracking of MAVs. Due to the limited FOV of a single camera, pose tracking using monocular visual SLAM may easily fail when the MAV navigates in unknown environments. Previous work addresses this problem mainly by fusing information from other sensors, like an inertial measurement unit (IMU), to achieve robustness of the whole system, which does not improve the robustness of visual SLAM itself. This thesis investigates solutions for improving the pose tracking robustness of a visual SLAM system by utilizing multiple cameras. A mathematical analysis of how measurements from multiple cameras should be integrated in the optimization of visual SLAM is provided. The resulting theory allows those measurements to be used for both robust pose tracking and map updating of the visual SLAM system. Furthermore, such a multi-camera visual SLAM system is modified to be a robust constant-time visual odometry. By integrating this visual odometry with an efficient back-end which consists of loop-closure detection and pose-graph optimization processes, a near-constant time multi-camera visual SLAM system is achieved for autonomous navigation of MAVs in large-scale environments.