Abstract:
Biofilms are mucous overgrowths adhering to surfaces by which microorganisms have created a microhabitat of their own. Inside the biofilm, a chemical interaction called quorum sensing takes place with the help of so called autoinducers. By developing the biofilm, the microorganisms living in it are better protected against harmful environmental influences, which makes them considerably more resistant to antibiotic agents and biocides. For this reason, it is vitally important to prevent the development of biofilms from happening in places where bacterial growth is unwanted.
In the dissertation at hand, methods were developed to analyze the function of enzymes causing an inactivation of the autoinducer class. In the course of this work, the gene product BPiB09 could be characterized as an oxireductase that degrades N-Acyl homoserine lactone. Furthermore, a screening process made it possible to detect a potentially biofilm-inhibiting effect of four different natural substances. Over and above that, methods were developed to explain an autoinducer system from a violacein producer.
The discovery of new natural products and the knowledge of their biological characteristics is an important part of the development of new pharmaceutical agents. In this project, four new genera of marine Actinomycetes were examined for new and biologically active compounds. From this screening, Diazepinomicin emerged. Later, new antioxidant and protease-inhibiting characteristics could be detected for this compound.
A profound comprehension of the function of PBSs may reveal new concepts in antibiotic agent research. To clarify such functionalities, three glycine derivatives were successfully prepared. Moreover, a mass spectrometric method to analyze the target compounds could be established.