Abstract:
The concept of visualization includes the goal of representing data of various kinds graphically. In many cases, the graphical, or visual, display facilitates conveying of information to the viewer, i.e., compared to a verbal description. Also, additional information in the visualization may be included by the use of shape and structures, by special arrangement of elements or by the use of colors.
In this work, the concept of visualization is applied to business process models. Techniques from the field of graph drawing are used. Process models can be mapped to general graphs and, thus, the methods and frameworks of graph drawing can be transferred through extensions and modifications to process models. For the acceptance of visualizations of special graphs, such as process models, the support of layout criteria is crucial. Layout criteria express additional requirements to a visualization technique, e.g. the drawing is calculated such that graph edges do not cross.
This work presents several novel algorithms for the visualization of business process models. For the modeling of business processes, we focus on the de–facto standard notation BPMN and BPEL (business process model and notation, business process execution language). The algorithms are optimized to support layout criteria. To provide the necessary layout criteria for business process models, we present the results of a specially conducted study at the beginning.
As a projection space, the visualization algorithms support both the two–dimensional plane and three–dimensional space. Since the approaches have major dierences in the requirements on the algorithms, we devote every display option a dedicated part of the work. In the the two–dimensional plane, we extend the Kandinsky model such that we obtain partitions in drawings, which support the structural elements of swimlanes and pools in BPMN. Furthermore, we introduce three layout patterns that should support the semantics of BPMN diagrams. This is a new approach and can not be achieved from previous, structurally oriented layout criteria. For the process notation language BPEL, we also develop a novel layout algorithm, which is based on the Sugiyama framework, a commonly used framework with support for the hierarchical and nested structure of BPEL processes.
For the three–dimensional space, three dierent approaches to visualization of BPMN models are presented. The first approach is based on an extension of the above–mentioned two–dimensional algorithm of the extended Kandinsky model. The second approach is to model the three–dimensional visualization problem as an integer linear program (ILP). For the third approach, we modify a two–dimensional approach of our own work such that a projection to the three–dimensional space is possible, and the requirements of the layout criteria can also be met in the three–dimensional visualization. All three approaches are described in detail. The analysis comprises a performance evaluation and an evaluation for compliance with the required layout criteria. There, we find a distinct advantage of the third approach with respect to both, to the performance and to the conformity of layout criteria.
All the described algorithms for the modeling language BPMN were newly developed and integrated in a software tool called BPMN–Layouter. The tool aims at good usability and, in addition, at the support of visualizing and modeling of business process models in BPMN. For this purpose, an interactive user interface with three–dimensional display support for rendering the process models was implemented. In addition to the algorithms for the visualization of business process models, we provide further results of related visualization projects.