Abstract:
Retinitis Pigmentosa (RP) is an inherited eye disease which causes progressive
photoreceptor degeneration and consequently blindness in humans. So far, there has been no found cure or reliable treatment for RP. The retinal degeneration 1 (rd1)mouse model is a well-studied model of human autosomal recessive RP. In 2007, it was found that over-activation of poly(ADP-ribose) polymerases (PARP) contributed to photoreceptor degeneration in the rd1 mouse. However, it was still unclear which PARP family member exactly was involved in photoreceptor degeneration. Therefore, the aim of this thesis was to investigate the role of PARP1, the most prominently expressed and extensively studied member of the PARP family, in photoreceptor degeneration in the rd1 retina.
Electroretinography, optic coherence tomography (OCT), scanning laser
ophthalmoscopy (SLO), and histology identified no significant differences between PARP1 knock-out (KO) and wild-type (wt) animals in terms of retinal function, thickness, and structure. In addition to PARP, histone deacetylase (HDAC) activity was shown to be involved in rd1 photoreceptor degeneration. Double-label immunohistochemistry showed poly(ADP-ribose) (PAR) accumulation - i.e. the product of PARP activity - in photoreceptor nuclei that were devoid of acetylated proteins, indicating a causal link between PARP and HDAC activity. We emulated the rd1 situation in organotypic retinal cultures derived from PARP1 KO and wt animals using zaprinast, a selective inhibitor of PDE6. Accumulation of cyclic guanosine monophosphate (cGMP) in zaprinast treated PARP1 KO retina was significantly reduced compared to zaprinast treated wt. At the same time, PAR accumulation and cell death were also significantly reduced in zaprinast treated PARP1 KO when compared with wt.
In conclusion, PARP1 appears to have an important role in the progression of
photoreceptor cell death. In rd1 photoreceptors, PARylation was linked to cell death as well as to deacetylation and HDAC activity, while PARP1 KO retina showed increased resistance to pharmacologically induced photoreceptor degeneration.
Because of the involvement of PARP in photoreceptor degeneration and since retinal function and morphology in PARP1 KO retina appeared normal, PARP1 promises to be an interesting target for future therapy development.