Bayesian Methods for Neural Data Analysis

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Rosenstiel, Wolfgang (Prof. Dr.) de_DE
dc.contributor.author Gerwinn, Sebastian de_DE
dc.date.accessioned 2011-04-07 de_DE
dc.date.accessioned 2014-03-18T10:22:44Z
dc.date.available 2011-04-07 de_DE
dc.date.available 2014-03-18T10:22:44Z
dc.date.issued 2010 de_DE
dc.identifier.other 340028653 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-55667 de_DE
dc.identifier.uri http://hdl.handle.net/10900/49523
dc.description.abstract Understanding the computations underlying the information processing in the nervous system is one of the major tasks in computational neuroscience. The amount of neural data is rapidly increasing. Hence, we need methods to analyze and interpret this data. Main requirements for these methods are that they can account for the variability observed in the recorded data as well as they can handle uncertainties about the underlying processing. Furthermore, they should be tractable to be applicable to large data sets. Bayesian analysis provides a principled way for incorporating these requirements as it explicitly models the involved uncertainties. In this thesis, we develop feasible Bayesian methods and apply them to simulated as well as real data. We exemplify the use of these methods on three different aspects of neural coding. First, we show how state-of-the-art models can be fitted to recorded data and obtain model based confidence intervals at the same time. Second, we show how probabilistic models can be used to extract the uncertain information about the stimulus on the basis of an observed spike train. Finally, within the framework of maximum entropy modeling, we study joint distribution of spikes and stimuli. en
dc.description.abstract Die Charakterisierung der Berechnungen, die der Informationsverarbeitung unseres Nervensystems zugrunde liegen, stellt eine der bedeutendsten Herausforderungen der theoretischen Neurowissenschaft dar. Um die wachsende Menge an neuronalen Daten zu analysieren und zu interpretieren brauchen wir speziell für diesen Zweck entwickelte Methoden. Dabei müssen diese Methoden in der Lage sein sowohl das hohe Maße an Variabilität in den Daten als auch eventueller Unsicherheiten in der Modell-Spezifizierung zu berücksichtigen. Bayesianische Methoden erfüllen diese Anforderungen, da sie die Unsicherheiten explizit modellieren. Gleichzeitig sollten sie jedoch skalierbar sein, sodass sie auch auf Datensätze von realistischer Größe anwendbar sind. In dieser Dissertation wurden solche skalierbaren Methoden entwickelt und sowohl auf simulierten als auch auf echte Daten angewandt. Diese Methoden habe ich benutzt um 3 Aspekte im Zusammenhang mit der neuronalen Kodierung zu analysieren. Zuerst zeige Ich, wie probabilistische Modelle genutzt werden können, um die unsichere Information über den anliegenden Stimulus nur anhand der beobachteten neuronalen Antwort zu extrahieren. In einem zweiten Aspekt konnte Ich mithilfe des Maximum Entropy Ansatzes eine konservative Approximation an die gemeinsame Verteilung von Spikes und Stimuli erhalten. Letztlich stelle ich eine approximative Methode vor, mit der aktuelle Standardmodelle an aufgenommene Daten angepasst werden können, insbesondere mit Berücksichtigung auf die auftretenden Unsicherheiten. de_DE
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Fehler in den Variablen , Log-lineares Modell , Informationstheoretisches Modell , Bayes-Inferenz , Statistische Schlussweise de_DE
dc.subject.ddc 310 de_DE
dc.subject.other Bayesian Inference , Probabilistic model , Generalized Linear Model , Spiking neurons en
dc.title Bayesian Methods for Neural Data Analysis en
dc.title Bayesianische Methoden zur neuronalen Datenanalyse de_DE
dc.type PhDThesis de_DE
dcterms.dateAccepted 2010-12-22 de_DE
utue.publikation.fachbereich Informatik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ doctoralThesis de_DE
utue.opus.id 5566 de_DE
thesis.grantor 17 Fakultät für Informations- und Kognitionswissenschaften de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige