Abstract:
Among an extensive industrial usage and a wide-ranging application as synthetic auxiliary in organic chemistry, 1H-benzotriazole and its derivatives are used for the preparation of complex molecular structures or heterocycles by the ring-opening of the [1,2,3]triazole moiety. The ring-opening reaction of the triazole moiety from different N-substituted 1H-Benzotriazoles upon reaction of nucleophiles discovered by Ziegler et al. 2004 is one of the most important ones, because it is the only one proceeding without loss of nitrogen. The aim of this work was the comprehensive study of this new ring-opening reaction.
The treatment of 1-[(nonafluorobutyl)sulfonyl]-1H-benzotriazole with enamines as nuclophiles gave the corresponding azo compounds, with N,N-diethyl-1,3-butadien-1-amine it reacts twice, affording a pyridazine zwitterion. If trimethylsilyl enol ethers are used as nucleophiles under TBAF-catalysis, hydrazones are resulting, respectively, 1-[(nonafluorobutyl)sulfonyl]-1H-benzo-triazole reacts twice with less sterically demanding silyl enol ethers lead to bis-azo-compounds. Furthermore, by choosing the appropriate nucleophiles which the molecular structure of nitrogen-rich heterocycles requiring, three new benzo[1,2,4]triazines and an aromatic azide were synthesized, the latter is likely to proceed via a pentazene or pentazole.
1-nitro-1H-benzotriazole reacts with phenolates and napthtolates under NaH-catalysis to give the ortho- and para-azo-compounds, with C,H-acidic compounds under basic conditions hydrazones are afforded. With 1-nitro-1H-benzotriazole, too, the molecular structure of a benzo[1,2,4]triazine and an aro-matic azide via a pentazene or pentazole intermediate stage was achieved.
1-Cyano-1H-benzotriazoles react with certain enamines to give imidazo[1,2-b]-[1,2,4]triazine-derivatives. Furthermore, with 1-cyano-6-methyl-7-amino-1H-benzotriazole a Dimroth rearrangement was observed and confirmed by 1H-NMR studies. With other nucleophiles 1-cyano-1H-benzotriazole reacts under nucleophilc addition, 1,3-dipolar cycloaddition or substitution at the cyano-group, without observation of a ring-opening reaction.
The oft-cited equilibrium between the evaluated 1H-benzotriazoles and the diazo-intermediates could not be confirmed by IR- and NMR-studies in any case.
The current and preceding studies illustrate, that the nucleophilc ring-opening reaction of 1H-benzotriazoles without loss of nitrogen offers a wide application in organic chemistry and that the full potential is not yet exploited.