Abstract:
Soils store a large amount of carbon, which is estimated to be around 2000 Pg globally. In this context, soil respiration, the carbon dioxide flux released from the soil, plays an important role. It has two main sources: the decomposition of soil organic matter by microorganisms and the activity of roots and root-associated organisms. Changes in the amount of carbon cycling through the soil may provide feedbacks that are relevant for climate changes. Thus, the overall objectives of this study were to quantify the turnover of carbon in the soil and to identify its controls.
Turnover times of different soil organic matter fractions were estimated from their carbon-14 isotope values (delta14C) combined with a model. The soil organic matter fractions were collected from 11 forest sites in northern Italy located along a mean annual temperature gradient from ~ 4 to 12 ºC. Turnover times of the different fractions increased with increasing soil depth and ranged from 2-15, 25-150, and 50-900 years, for the labile, intermediate, and stabilized soil organic matter fraction, respectively.
Temperature sensitivities of the turnover times of the different soil organic matter fractions were investigated from correlation coefficients and regression analysis. The temperature sensitivity of the stabilized soil organic matter fraction was at least equal to that of the intermediate fractions, and possibly twice as high. A temperature sensitivity of the turnover times of the labile fraction could not observed here. Several factors may have influenced the results as observed here for the three soil organic matter fractions, for example the applied modeling assumptions, or the confounding effect of occasional summer drought at the warmer sites.
From the delta14C-based turnover times and the carbon stocks of the different soil organic matter fractions respiration fluxes were calculated. Subsequently, this soil organic matter-derived respiration was subtracted from previously determined total annual soil respiration of the sites. The following partitioning of total soil respiration was found: ~ 30% from the decomposition of litter layers; less then 10% from the decomposition of soil organic matter in the mineral soil; and ~ 60% from the activity of roots, root-associated organisms, and the decomposition of organic matter that decomposes in less than one year after it has entered the soil. To subdivide the latter respiration source, respiration derived from the annual litterfall within the first year was estimated from an exponential decay function with a decomposition rate based on the delta14C-based turnover times of the fresh litter.
Total soil respiration increased with increasing nitrogen content of the litter layers, this relationship explained 70% of variation in total soil respiration. The litter-derived and root-derived respiration both seemed to increase with increasing litter nitrogen. However, the occurrence of two outliers hampered interpretation of these latter results. Overall, the results suggested that at the sites a large fraction of the biological activity in the soil is located in or near the litter layers where the availability of nitrogen is high, and results suggested that plants may maintain a high availability of nitrogen in the soil through the production of litter with high nitrogen content.
This study contributed to research on soil carbon dynamics in that: (i) the temperature sensitivity of turnover times of different soil organic matter fractions were estimated using delta14C analyses, a method that quantifies soil organic matter turnover on a decadal scale; (ii) the use of delta14C-based turnover times of soil organic matter to partition soil respiration was evaluated; and (iii) the effect of the availability of nitrogen in the soil on soil respiration was shown and discussed.