Abstract:
The observation of most astrophysical X-ray sources is characterized by the fact that these usually rather weak cosmic sources have to be detected in the presence of a very strong background. This background, which has its origin in the interactions of high-energy cosmic particles with the materials that constitute the camera and also in the characteristic properties of the respective detector, has a strong impact on the ultimately achievable sensitivity of the instrument. Sources that have a flux below the limiting minimum detectable flux of a certain instrument will therefore not be detected or cannot be observed within a given experiment. To gain a higher sensitivity, which always converts to new scientific results, an intense effort to
minimize the internal detector background is undertaken.
This thesis has been devoted to simulation studies of the instrumental background of X-ray detectors in astronomy. In this context, it is first shown on the basis of the pn-CCD camera on board the XMM-Newton satellite, that Monte-Carlo simulations of the physics processes and interactions caused by the radiation environment in the respective orbit can reproduce the measurements of the actual detector background. With the thus validated simulation environment, the detector geometry of the future X-ray mission Simbol-X has been optimized in collaboration with the designers. Special attention has been paid to the task of background minimization and experiment deadtime. Furthermore, the composition and spectral shape of the remaining background is predicted. For another future X-ray telescope called eROSITA, estimations of the detector background, depending on different orbit inclinations and thus different radiation environments, are presented.
Part of the work has also been concerned with hardware development. In a collaboration with the electronics lab at the Institute for Astronomy and Astrophysics in Tübingen (IAAT), a fast digital detector-event preprocessor based on experiences gained with XMM-Newton has been developed. The processor, which has been designed for utilization on board, filters the detector
output with different criteria and therefore noticeably reduces the detector background as well as the necessary telemetry rate.