Abstract:
In the present work new oligosaccharide mimetics were built by synthesis of glycosylated hexa-beta-peptides. These glykopeptid building blocks, consisting of a carbohydrate unit (galactose and glucose), has been connected with a n-pentyl spacer and finally an aspartic acid unit. Afterwards different alpha and beta amino acids were connected with the beta-carboxylic acid function group of the aspartic acid, forming tripeptides with a beta-amino acid backbone. For the synthesis of tripeptides two different methods were optimized. For one thing the glycopeptid building block was synthesised with activated amino acids in order to build a tripeptide building block. For another, a dipeptide was synthesised first based on single buiding blocks of the amino acid, then coupled with the aspartic acid of the glycopeptid building block. In this manner dipeptides were integrated into the peptide backbone with beta-alanine, aspartic acid as well as mixed dipeptides with aspartic acid-amino , aspartic acid-aminocyclohexanecarboxylic acid and aspartic acid-aminocyclopentanecarboxylic acid. These tripeptides were used in a kind of building block system to build up hexapeptides. The tripeptides with a beta amino acids in the end of the backbone could be coupled to four different hexapeptides. For this synthesis peptide coupling reagents such as EDCl, pentafluorophenol, TBTU, HBTU, PyBOP and HATU were used. The hexapeptides were synthesised with the tripeptides including beta-alanine-beta-alanine, aspartic acid-aminocyclohexanecarboxylic acid and aspartic acid-aminocyclopentanecarboxylic acid into the peptide backbone.
For the structural investigation the protecting groups were completely removed from all hexapeptide. First they were treated with trifluoro acetic acid, then with ammonia in methanol. The NOE-spectra and CD spectra of the hexapeptides including aminocyclohexanecarboxylic acid show a helical secondary structure in water. The hexapeptid with beta-alanine in the peptid backbone indicates a beta-folder structure. The hexapeptide with aminocyclopentanecarboxylic acid and the hexapeptide with both beta-amino acids have a random coil structure. Finally the unproctected hexapeptides were immobilised on nitrocellulose and then treated with the lectines Con A, PHE-A and GNA for a lectine-screening. The helicale structure of the hexapeptid with aminocyclohexanecarboxylic acid showed only a visible connection with Con A, so did the hexapeptide with beta-alanine and aminocyclopentanecarboxylic with random coil structure. On the other hand, the hexapeptide with both alicyclischen beta amino acids in the backbone showed a visible connection to all three lectines. Finally the flexible random coil structure of the mixed hexapeptid was accepted better than the helicale structure of the hexapeptids with aminocyclohexanecarboxylic acid.