Inhaltszusammenfassung:
Im Rahmen dieser Arbeit wurden die statischen und dynamischen Eigenschaften fraktionaler Flußwirbel in langen Josephsonkontakten untersucht.
Im Gegensatz zu den in der Supraleitung seit langem bekannten Abrikosov- und Josephsonflußwirbeln tragen fraktionale Flußwirbel nicht ein sondern nur den Bruchteil eines magnetischen Flußquants.
Sie sind ortsgebundene, zu einem gewissen Grad durch äußere Kräfte verformbare Objekte, die sich spontan an den Phasensprungstellen so genannter 0-kappa-Josephsonkontakte ausbilden können.
0-kappa-Kontakte und fraktionale Flußwirbel stellen dabei eine Verallgemeinerung der weitaus bekannteren 0-pi-Kontakte und den darin auftretenden Semifluxonen dar, wobei nun nicht nur pi- sondern beliebige, durch den Parameter kappa beschriebene Sprünge der Josephsonphase betrachtet werden.
Durch die Verwendung sogenannter "künstlicher", auf Nb-AlOx-Nb Technologie basierender 0-kappa-Kontakte, in denen der Sprung der Josephsonphase durch einen extern steuerbaren Strom erzeugt wird und damit beliebig einstellbar ist, konnten erstmals experimentelle Untersuchungen der klassischen Dynamik fraktionaler Flußwirbel durchgeführt werden.
Zum einen gelang der Nachweis halbzahliger Nullfeldstufen, die Ausdruck eines zeitlich periodischen Umklapp-/Hüpfprozesses fraktionaler Flußwirbel in Josephsonkontakten mittlerer Länge und geringer Dämpfung sind.
Zum anderen konnte mit Hilfe der Resonanzspektroskopie die oszillatorische Eigenmode fraktionaler Flußwirbel untersucht werden. Im Gegensatz zu Josephsonfluxonen sind fraktionale Flußwirbel zu einer charakteristischen Eigenschwingung um ihre Ruhelage fähig, deren Frequenz innerhalb der so genannten Plasmabandlücke liegt und über die Größe des Phasensprungs kappa und einen extern angelegten Biasstrom kontinuierlich zwischen der Plasmafrequenz und Null durchgestimmt werden kann.
Die Abhängigkeit der Eigenschwingung eines einzelnen fraktionalen Flußwirbels von Biasstrom und kappa konnte erstmals experimentell bestimmt werden.