Abstract:
The purpose of this work was to achieve a profound and systematic understanding of magnetic susceptibility and relaxation effects of interstitial and intracellular contrast agents in Magnetic Resonance Imaging (MRI). The emphasis was on the investigation of relaxation and field inhomogeneity effects due to magnetically labeled cells and to exploit these effects to develop MR techniques for cell detection.
In vitro measurements of longitudinal (R1) and transversal relaxation rates (R2, R2*) of extracellular contrast agents in human blood plasma and cells labeled with intracellular contrast agents were conducted. For the latter experiments, proper preparation techniques of labeled cells in agar gel suspensions were developed and evaluated. Magnetic field inhomogeneity effects of magnetic dipoles, magnetic material and labeled cells were studied by means of a three-dimensional numerical model simulating magnetostatics. This model was developed in order to study both microscopic as well as macroscopic magnetic field distortions related to paramagnetic and superparamagnetic contrast media, and magnetically labeled cells. In further experiments, the inhomogeneous spectral broadening due to labeled cells was exploited to achieve selective imaging of labeled cells by means of an alternative ‘positive contrast’.
This work contributes to the better understanding of relaxation and magnetic susceptibility effects in MRI induced by extracellular or interstitial contrast agents and by cells labeled with iron oxide nanoparticles. The relaxation effects and magnetic field distortions were studied systematically for distances smaller than the MRI voxel size (i.e., the microscopic scale) as well as for distances larger than the imaging voxel (i.e., the macroscopic scale). It was demonstrated, that signal dephasing effects and Larmor frequency shifts can be exploited to generate various kinds of image contrast in presence of interstitial and intracellular contrast agents.