Visual computing for medicine

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Strasser, Wolfgang de_DE
dc.contributor.author Bartz, Dirk de_DE
dc.date.accessioned 2006-05-09 de_DE
dc.date.accessioned 2014-03-18T10:15:41Z
dc.date.available 2006-05-09 de_DE
dc.date.available 2014-03-18T10:15:41Z
dc.date.issued 2005 de_DE
dc.identifier.other 308189353 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-22895 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48916
dc.description.abstract Visual computing addresses various aspects of the processing of image data. These aspects include the full visual computing pipeline starting from data acquisition, via image processing, the graphical representation of the data, to the interaction with them. These aspects have been in the focus of my work of the past 13 years, and became the focus of the research group "Visual Computing for Medicine" (VCM). Although we concentrate on the medical domain as major application fields, I would like to stress that the research contributions are addressing general problems of image processing and computer graphics. Furthermore, they can be applied to many other application fields. The following five parts structure the content into major stages of the visual computing pipeline, while the chapters focus on the specific contributions to the pipeline stages, mostly in the context of medical application. Part I starts discussing the fundamentals of medical imaging in Chapter 2. Specifically, it gives an overview on the structure of volumetric image datasets in Section 2.1, and describes typical data acquisition modalities, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and several more (Section 2.2). Since volumetric data is of a discrete nature, the fundamentals of signal theory - the sampling theorem (Section 2.3.1) - and the source of image artifacts will be discussed in Section 2.3. The consequences of incorrect sampling for discrete volumetric image data are widespread and lead to typical artifacts like aliasing (Section 2.3.2), the partial volume effect (Section 2.3.3), interpolation artifacts (Section 2.3.4), and signal artifacts (Section 2.3.5) itself. The second part discusses approaches on the enhancement and filtering of volumetric image data in Chapter 3. Namely, it addresses the necessary windowing operation, where a higher dynamic range - or high precision voxel value range - is mapped into a smaller one. In order to maintain a good contrast, an operator for high dynamic range windowing is introduced and its effectiveness for volumetric image data is demonstrated. en
dc.description.abstract Visuelle, computer-gestützte Medizin de_DE
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Erweiterte Realität <Informatik> , Immersion <Virtuelle Realität> , Virtuelle Realität , Volumendaten / Visualisierung , High dynamic Range de_DE
dc.subject.ddc 004 de_DE
dc.subject.other Visuelles Rechnen , Visuelle Medizin , Virtuelle Medizin , Erweiterte Realität , Visualisierung de_DE
dc.subject.other Visual Computing , Visual Medicine , Virtual Medicine , Augmented Reality en
dc.title Visual computing for medicine en
dc.title Visuelle, computer-gestützte Medizin de_DE
dc.type PhDThesis de_DE
dcterms.dateAccepted 2005-11-23 de_DE
utue.publikation.fachbereich Sonstige - Informations- und Kognitionswissenschaften de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ doctoralThesis de_DE
utue.opus.id 2289 de_DE
thesis.grantor 17 Fakultät für Informations- und Kognitionswissenschaften de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige