Abstract:
Many microbes are able to respire aerobically oxygen or anaerobically other electron acceptors for example sulphate, nitrate, manganese(IV) or Fe(III). As iron minerals are widespread in nature, dissimilatory iron(III) reduction by different microorganisms is a very important process of anaerobic respiration.
The general goal of this work was to improve the knowledge of processes, in which iron-reducing microbes are said to play an important role. For this purpose, in one part the focus was made on anaerobic contaminant degradation and in the other part on studies on the mechanism of microbial iron(III) reduction. Both parts were investigated in growth and cell suspension experiments with different microorganisms.
At former industrial sites, monoaromatic hydrocarbons, such as benzene, toluene, ethylbenzene, and xylene (BTEX), are widespread contaminants, which cause different problems due to their high solubility in water and strong toxicity. At such sites, where usually anoxic conditions prevail, the anaerobic degradation of these compounds is a very important process. In this study, the anaerobic degradation of BTEX compounds by dissimilatory iron-reducing microorganisms was examined. In order to isolate new bacterial strains, enrichment cultures with the different BTEX compounds added as sole carbon and energy source were prepared. Successful enrichment cultures were obtained for all BTEX substrates both in the presence and absence of AQDS (9,10-anthraquinone-2,6-disulfonic acid). The electron balances showed a complete anaerobic oxidation of the aromatic compounds to CO2. This is the first report on the anaerobic degradation of o-xylene and ethylbenzene in sediment free iron-reducing enrichment cultures. Also, the successful isolation of a pure strain, which is able to degrade toluene, and another pure strain, which is able to degrade toluene or o-xylene, was reported in this work.
Cyanide or cyanide-metal complexes are frequent contaminants of soil or aquifers at industrial sites. Toxic cyanides can be released from such sites by outgasing or transport with the groundwater. Cyanides form very stable complexes with iron, such as ferrocyanide [Fe(CN)6]4- and ferricyanide [Fe(CN)6]3-. Together with ferric iron, ferrocyanide forms an insoluble blue pigment, the so called Prussian Blue (Fe4[Fe(CN)6]3), which may occur in the subsurface of contaminated sites as a blue coating on mineral surfaces. It was shown in this study that the insoluble and colloidal iron(III)-cyanide-complex Prussian Blue is readily reduced and utilized as electron acceptor by the dissimilatory iron-reducing organisms Geobacter metallireducens and Shewanella alga strain BrY. The microbial reduction of the dark blue pigment Prussian Blue lead to the formation of a completely colourless solid mineral, presumably Prussian White (Fe2[Fe(CN)6]), which could be reoxidized through exposure to air, regaining the dark blue colour. In addition, the microorganisms were able to grow with Prussian Blue, using it as the sole electron acceptor. G. metallireducens could also reduce Prussian Blue coatings on sand, which was sampled from a cyanide-contaminated site.
As iron(III) minerals are only poorly soluble at neutral pH, it is still under discussion how dissimilatory iron(III)-reducing microorganisms are able to use the different iron(III) species. In the last years, several mechanisms of electron transfer from microbial cells to iron mineral surfaces have been discussed. In this work, an additional completely new mechanism is proposed and investigated: The transfer of electrons from bacterial cells to iron minerals is performed via colloidal iron(III) particles, which are naturally abundant in many aquifers. It could be shown that colloidal iron(III) was an effective electron acceptor in cell suspension experiments with washed Geobacter metallireducens cells. The reduction of the colloidal ferrihydrite particles was much faster than the reduction of bulk ferrihydrite mineral. When Geobacter cells were grown on amorphous ferrihydrite, the addition of colloidal Prussian Blue mediated an increase of the electron transfer rate to the solid minerals. The presented data strongly indicate that colloids might play a significant role in microbial iron reduction processes.
The data presented for the degradation of the different contaminants might help to improve or develop further strategies for natural attenuation and bioremediation of contaminated sites. Also the finding of the mediated iron reduction by iron colloids might lead to a completely different look at iron reduction processes and thus might also be used in newly developed remediation techniques. However, still further experiments are needed under conditions, which are closer to the in situ situation of different environments to elucidate the real contribution of iron(III) reduction to the different processes mentioned compared to other forms of anaerobic respiration.