dc.contributor.author |
Borchert, Bernd |
de_DE |
dc.contributor.author |
Reinhardt, Klaus |
de_DE |
dc.date.accessioned |
2004-11-15 |
de_DE |
dc.date.accessioned |
2014-03-18T10:13:31Z |
|
dc.date.available |
2004-11-15 |
de_DE |
dc.date.available |
2014-03-18T10:13:31Z |
|
dc.date.issued |
2004 |
de_DE |
dc.identifier.other |
11514076X |
de_DE |
dc.identifier.uri |
http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-14494 |
de_DE |
dc.identifier.uri |
http://hdl.handle.net/10900/48673 |
|
dc.description.abstract |
As a generalization of paths, the notion of paths of bandwidth w is introduced. We show that, for a given constant w >= 1, the corresponding search problem for such a path of length k in a given graph is NP-complete and fixed-parameter tractable in the parameter k, like this is known for the special case w=1, the LONGEST PATH problem. We state the FPT algorithm in terms of a guess and check protocol which uses witnesses of size polynomial in the parameter. |
en |
dc.language.iso |
en |
de_DE |
dc.publisher |
Universität Tübingen |
de_DE |
dc.rights |
ubt-nopod |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_ubt-nopod.php?la=de |
de_DE |
dc.rights.uri |
http://tobias-lib.uni-tuebingen.de/doku/lic_ubt-nopod.php?la=en |
en |
dc.subject.classification |
Pfad <Mathematik> , Pfadalgorithmus , Komplexitätsklasse NP |
de_DE |
dc.subject.ddc |
004 |
de_DE |
dc.title |
Searching paths of constant bandwidth |
en |
dc.type |
Report |
de_DE |
dc.date.updated |
2012-10-11 |
de_DE |
utue.publikation.fachbereich |
Sonstige - Informations- und Kognitionswissenschaften |
de_DE |
utue.publikation.fakultaet |
7 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |
dcterms.DCMIType |
Text |
de_DE |
utue.publikation.typ |
report |
de_DE |
utue.opus.id |
1449 |
de_DE |
utue.opus.portal |
wsi |
de_DE |
utue.opus.portalzaehlung |
2004.10000 |
de_DE |
utue.publikation.source |
WSI ; 2004 ; 10 |
de_DE |
utue.publikation.reihenname |
WSI-Reports - Schriftenreihe des Wilhelm-Schickard-Instituts für Informatik |
de_DE |
utue.publikation.zsausgabe |
2004, 10 |
|
utue.publikation.erstkatid |
2919855-0 |
|