Abstract:
In this study, the climate of the Tortonian (Late Miocene, 11 to 7 Ma) and particularly the effects of the palaeovegetation on the climate are investigated using the complex atmospheric general circulation model ECHAM4 coupled to a mixed-layer ocean model (ML). Previous Tortonian simulations consider an adjusted palaeocean heat transport and an adapted palaeorography, but use the Recent vegetation (Steppuhn, 2002; Steppuhn et al., submitted; Steppuhn et al., in prep.). For the present Tortonian simulation, the palaeovegetation is considered in addition to the previously adapted Tortonian boundary conditions. A proxy-based reconstruction of the Tortonian vegetation is used to adapt the surface parameters in the ECHAM4/ML model and a Tortonian climate simulation is performed. According to this Tortonian run, the palaeovegetation has significant effects on the Late Miocene climate. Due to the adapted Tortonian vegetation, the meridional temperature gradient is reduced as compared to nowadays. The comparison with proxy data demonstrates, that an appropriate palaeovegetation contributes to a more realistic representation of the Tortonian climate in the model ECHAM4/ML. With model results of the Tortonian run with ECHAM4/ML, the carbon cycle and vegetation model CARAIB is run. In its main patterns, the simulated Tortonian vegetation of the CARAIB model agrees with the proxy-based reconstruction of the palaeovegetation. CARAIB sensitivity experiments demonstrate that variations in the atmospheric CO2 are rather more important for the vegetation than differences between the Tortonian and today’s climate. However, simulations with both models, ECHAM4/ML and CARAIB, are not completely in accordance with proxy data. Therefore, it can be concluded, that the Late Miocene climate is still not completely understood.