Multi-Analyt-Bestimmung von endokrinen Disruptoren im Wasser mit Hilfe eines Fluoreszenz-Immunoassays unter Verwendung von neuronalen Netzen

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Gauglitz, Günter de_DE
dc.contributor.author Reder, Sabine Hannah de_DE
dc.date.accessioned 2003-02-27 de_DE
dc.date.accessioned 2014-03-18T10:11:14Z
dc.date.available 2003-02-27 de_DE
dc.date.available 2014-03-18T10:11:14Z
dc.date.issued 2003 de_DE
dc.identifier.other 104056916 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-7123 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48452
dc.description.abstract Endokrine Disruptoren sind Substanzen, die eine estrogene Wirkung zeigen. Sie sind zum Teil in großen Mengen in unserer Umwelt zu finden und können die Entwicklung von Menschen und Tieren beeinträchtigen. Im Rahmen dieser Arbeit wurden Assays entwickelt, mit denen mehrere endokrine Substanzen im Wasser simultan mit einem Fluoreszenzbiosensor gemessen werden können. Hierzu wurden kreuzreaktive Antikörper und neuronale Netze für die Datenauswertung verwendet. Die Automatisierung und die Feldtauglichkeit des Sensors standen dabei im Vordergrund. Für den Aufbau des Assaysystems wurden polyklonale Antikörper mit der Reflektometrischen Interferenz-Spektroskopie im Hinblick auf Affinitätskonstante, Kinetik und Kreuzreaktivität charakterisiert. Es wurde ein Modell zur Beschreibung des Einflusses eines Kreuzreagenz auf die Kalibrierung eines Analyten entwickelt. Mit den erhaltenen Daten wurden Einzelkalibrierungen für Estron, Estradiol, Ethinylestradiol und Bisphenol A mit einem Biosensor beruhend auf dem „total internal reflectance fluorescence“ (TIRF)-Prinzip durchgeführt und hinsichtlich der Nachweisgrenze und Stabilität der biologischen Komponenten optimiert. Anschließend wurden binäre und ternäre Assaysysteme auf dem TIRF-Sensor entwickelt. Die Datenanalyse erfolgte mit neuronalen Netzen. Verschiedene Analyte wurden kalibriert, und eine Optimierung bezüglich der Nachweisgrenze, des Versuchsplans und des Netzdesigns, sowie die Mengen der Antikörper durchgeführt. Alle Nachweisgrenzen erreichten den sub-ppb-Bereich. Zuletzt wurde noch ein Assaysystem für den Analyten Microcystin aus Blaualgen mit dem TIRF-Sensor entwickelt. Mit diesem System soll eine Online-Überwachung von Oberflächengewässern ermöglicht werden, um letztlich ein Frühwarnsystem zu erhalten, das in kürzester Zeit (< 1h) Informationen über mögliche Kontaminationen sammelt und diese an öffentliche Stellen weiterleitet. de_DE
dc.description.abstract Endocrine disrupting compounds, especially chemicals with estrogenic activity, have drawn increasing attention in recent years because of their eventual effects on human and wildlife development and reproduction. Regarding the toxicity of these substances the contamination state of the environment, especially surface waters, is not reached. Unfortunately the critical concentration for the estrogenic effect is extremely low. Therefore a monitoring of waste water is necessary. An immunosensor for fast and direct monitoring of surface water is presented. The multi-analyte application of this sensor uses a data acquisition called neural networks. The first aspect of this work was the characterisation of the polyclonal antibodies with the reflectometric interference spectroscopy with regard to affinity constants, kinetics and cross-reactivity. Within these studies a mathematical model was developed for the description of the influence which a cross-reactant shows in the calibration of a standard analyte. With these information single-analyte calibration for estrone, estradiol, ethinylestradiol, bisphenol A, atrazine and simazine were developed on the total internal reflectance fluorescence (TIRF)- sensor and optimised in terms of limit of detection and stability of the biological compounds. Afterwards these analytes were used to develop a multi-analyte assay with cross-reactive antibodies and neural networks for data acquisition. The binary and ternary calibrations were optimised with respect to limit of detection, experimental design, and neural net design. The calibrations were validated with real samples. All limits of detection are in the sub ppb-range. Besides these cross-reactivity assays an assay for microcystin, a toxin of cyano bacteria, was developed. The main interest here was an online-monitoring of surface water to obtain an early-warning system that can immediately react e.g. on contamination of drinking water reservoirs or of lakes for bathing. en
dc.language.iso de de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Kreuzreaktivität de_DE
dc.subject.ddc 540 de_DE
dc.subject.other TIRF , Neuronale Netze , Endokrine Disruptoren de_DE
dc.subject.other TIRF , cross-reactivity , neural network , endocrine disruptors en
dc.title Multi-Analyt-Bestimmung von endokrinen Disruptoren im Wasser mit Hilfe eines Fluoreszenz-Immunoassays unter Verwendung von neuronalen Netzen de_DE
dc.title Multi-analyte assay based on total internal reflectance fluorescence und neural networks for the determination of endocrine disruptors in water en
dc.type PhDThesis de_DE
dc.date.updated 1970-01-01 de_DE
dcterms.dateAccepted 2003-01-31 de_DE
utue.publikation.fachbereich Sonstige - Chemie und Pharmazie de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ doctoralThesis de_DE
utue.opus.id 712 de_DE
thesis.grantor 14 Fakultät für Chemie und Pharmazie de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige