Sorption and Transport Behaviour of Hydrophobic Organic Compounds in Soils and Sediments of Bangladesh and Their Impact on Groundwater Pollution : Laboratory Investigations and Model Simulations

DSpace Repository

Show simple item record

dc.contributor.author Rahman, Mohammed Mokhlesur de_DE
dc.date.accessioned 2002-10-25 de_DE
dc.date.accessioned 2014-03-18T10:10:38Z
dc.date.available 2002-10-25 de_DE
dc.date.available 2014-03-18T10:10:38Z
dc.date.issued 2002 de_DE
dc.identifier.other 102364206 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-6175 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48412
dc.description.abstract *** Zugleich als Dissertation an der Univ. Tübingen erschienen, 2002 *** This thesis focuses on the elucidation of the sorption and related transport processes controlling the fate of hydrophobic organic compounds (HOCs) (contaminants and pesticide) in the subsurface environment. For a variety of organic compounds (phenanthrene, 1,2-DCB, TCE and carbofuran) batch and column experiments were carried out with different geosorbents (deltaic, floodplain and residuum soils, aquifer sediments and peat) to simulate the effect in Bangladesh top soils and sediments and the ultimate impact on groundwater. Overall, the results reported here so far indicate that sorption in these samples for the chemicals investigated is dominated by the partitioning processes. A nonlinear type sorption isotherm is described by the combination of the partitioning and pore-filling mechanisms. The solubility normalized Freundlich model predicts an inverse linear relationship between the sorption coefficient measured at a given relative concentration vs. S which facilitate the prediction of sorption of a variety of pollutants based on measured data of one probe compound. An effect of preferential solute transport coupled with diffusion into the surrounding matrix region has been examined by conducting macropore flow column experiments. A new analytical solution was developed to model the breakthrough curves. The model accounts for advection in the macropore region, diffusion into the matrix region and linear sorption in both regions. From the experimental results and the model assumptions it was concluded that sorption equilibrium was not achieved during matrix diffusion at the time scale of the macropore flow experiment. The combination of batch and column experimental results together with materials (solids) and environmental properties and a use of solute transport model, can provide tools for cost-effective soil and groundwater risk assessment. en
dc.description.abstract *** Published as printed thesis at Tuebingen University, 2002 *** en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-nopod de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ubt-nopod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ubt-nopod.php?la=en en
dc.subject.classification Sorption , Diffusion , Bangladesch , Grundwasserverschmutzung de_DE
dc.subject.ddc 550 de_DE
dc.subject.other Batch and Column Experiment , Solute Transport Modelling , Groundwater Risk Assessment , Bangladesh en
dc.title Sorption and Transport Behaviour of Hydrophobic Organic Compounds in Soils and Sediments of Bangladesh and Their Impact on Groundwater Pollution : Laboratory Investigations and Model Simulations en
dc.type Book de_DE
dc.date.updated 2010-02-11 de_DE
utue.publikation.fachbereich Sonstige - Geowissenschaften de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ book de_DE
utue.opus.id 617 de_DE
utue.opus.portal tga_c de_DE
utue.opus.portalzaehlung 63.00000 de_DE
utue.publikation.source Tübinger Geowissenschaftliche Arbeiten (TGA) : Reihe C, Hydro-, Ingenieur- und Umweltgeologie ; 63 de_DE
utue.publikation.reihenname Tübinger Geowissenschaftliche Arbeiten (TGA) : Reihe C de_DE
utue.publikation.zsausgabe 1999, 47
utue.publikation.zstitelid 1093347-500

Dateien:

This item appears in the following Collection(s)

Show simple item record