Kapazitive pH-Sensoren auf der Basis von makroporösem Silizium mit Doppelisolatorschicht aus thermisch oxidiertem SiO2 und LPCVD-Si3N4

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor Fachhochschule Aachen, Abteilung Jülich, Ginsterweg 1, 52528 Jülich de_CH
dc.contributor Institut für Physikalísche und Theoretische Chemie de_DE
dc.contributor.author Simonis, A. de_DE
dc.contributor.author Ruge, C. de_DE
dc.contributor.author Ecken, H. de_DE
dc.contributor.author Lüth, H. de_DE
dc.contributor.author Schöning, M. J. de_DE
dc.contributor.other Gauglitz, Günter de_DE
dc.date.accessioned 2001-11-12 de_DE
dc.date.accessioned 2014-03-18T10:09:22Z
dc.date.available 2001-11-12 de_DE
dc.date.available 2014-03-18T10:09:22Z
dc.date.issued 2001 de_DE
dc.identifier.other 099402203 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-3446 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48234
dc.description.abstract Halbleitersensoren für den Ionennachweis in wässrigen Lösungen lassen sich einfach und kostengünstig als kapazitive Feldeffektstrukturen in Form von sogenannten EIS- (Elektrolyt-Isolator-Silizium) Sensoren realisieren. Allerdings sind solche Sensoren begrenzt miniaturisierbar, da ihre geometrische Fläche direkt proportional in das Meßsignal, die Kapazitätsänderung, eingeht. Um diesen Nachteil zu umgehen, haben wir auf dem ersten BioSensorSymposium in München (1999) einen neuartigen Lösungsansatz vorgeschlagen, bei dem makroporöses Silizium als Basismaterial für verschiedene sensoraktive Substanzen, wie z.B. pH-sensitive Schichten und Enzyme eingesetzt werden kann. Bei der Verwendung von makroporösem Silizium als Transducermaterial hat die durch den Herstellungsprozeß bedingte Vergrößerung der sensoraktiven Oberfläche nämlich eine Zunahme der Meßkapazität zur Folge. Aufgrund der Ätzanordnung zur Herstellung von porösem Silizium war es bisher allerdings nur möglich, Niedertemperaturprozesse, wie das PECVD (Plasma-Enhanced-Chemical-Vapour-Deposition)-Verfahren, zur Abscheidung von SiO2 als Isolatorschicht und Si3N4 als pH-sensitiver Schicht zu verwenden. Solche Sensoren besitzen allerdings keine hohe Langzeitstabilität im Meßbetrieb (ca. 2 Monate), da die dielektrischen Schichten unzureichende Korrosionseigenschaften aufweisen. Zur Verbesserung der Langzeitstabilität von Sensoren aus porösem Silizium bietet sich die Verwendung von thermisch oxidiertem Silizium als Isolatorschicht und das Abscheiden von Siliziumnitrid als pH-sensitive Schicht mittels LPCVD (Low-Pressure- Chemical-Vapour-Deposition)-Verfahren an. Vorangegangene Arbeiten aus unserer Arbeitsgruppe hatten gezeigt, daß planare Sensoren mit LPCVD-Nitrid als Transducermaterial über einen Zeitraum von sieben Monaten konstant hohe Sensitivitäten nahe dem Nernst-Idealwert aufweisen. de_DE
dc.language.iso de de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-nopod de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ubt-nopod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ubt-nopod.php?la=en en
dc.subject.classification Biosensor , Wasserstoffionenkonzentration de_DE
dc.subject.ddc 540 de_DE
dc.subject.other pH-Sensoren , makroporöses Silizium de_DE
dc.title Kapazitive pH-Sensoren auf der Basis von makroporösem Silizium mit Doppelisolatorschicht aus thermisch oxidiertem SiO2 und LPCVD-Si3N4 de_DE
dc.type Other de_DE
dc.date.updated 2010-02-10 de_DE
utue.publikation.fachbereich Sonstige - Chemie und Pharmazie de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ report de_DE
utue.opus.id 344 de_DE
utue.publikation.source http://barolo.ipc.uni-tuebingen.de/biosensor2001/ de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige