Microfluidic Plastic Devices for Single-use Applications in High-Throughput Screening and DNA-Analysis

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor 1)Greiner Bio-One GmbH, Maybachstrasse 2, 72636 Frickenhausen (Germany) de_CH
dc.contributor Institut für Physikalische und Theoretische Chemie de_DE
dc.contributor.author Gerlach, Andreas de_DE
dc.contributor.author Knebel, Günther de_DE
dc.contributor.author Guber, A. E. de_DE
dc.contributor.author Heckele, M. de_DE
dc.contributor.author Herrmann, D. de_DE
dc.contributor.author Muslija, A. de_DE
dc.contributor.author Schaller, T. de_DE
dc.contributor.other Gauglitz, Günter de_DE
dc.date.accessioned 2001-11-08 de_DE
dc.date.accessioned 2014-03-18T10:09:17Z
dc.date.available 2001-11-08 de_DE
dc.date.available 2014-03-18T10:09:17Z
dc.date.issued 2001 de_DE
dc.identifier.other 099397315 de_DE
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-3196 de_DE
dc.identifier.uri http://hdl.handle.net/10900/48210
dc.description.abstract Microfluidic devices fabricated by mass production offer an immense potential of applications such as high-throughput drug screening, clinical diagnostics and gene analysis [1]. The low unit production costs of plastic substrates make it possible to produce single-use devices, eliminating the need for cleaning and reuse [2]. Fabrication of microfluidic devices can be applied by microtechnical fabrication processes in combination with plastic molding techniques [3]. Basically, replication in plastics requires a hot embossing or injection molding tool. Various microfabrication technologies for the masterfabrication are established, such as the LIGA technique, mechanical micromachining and the micro electrical discharge machining technique (µEDM). Depending on the specific requirements, the most suitable process can be selected. The availability of these technologies allows to generate robust metal molding tools which exhibit the inverse shapes of the intended microstructures. In close collaboration, Greiner Labortechnik and Forschungszentrum Karlsruhe have fabricated prototype single-use plastic microfluidic devices in a standard microplate format by hot embossing with a mechanical micromachined molding tool and subsequent sealing of the microchannels. The microfluidic lab-on-chip structures are compatible with existing plate and liquid handling robotics. Sub-microliter sample volumes can be applied in the 96-channel multiplexed microstructures. Additionally, the combination of small assay volumes and the possibilities of integrated capillary electrophoretic separation provide a powerful tool for rapid assay development. This presentation will show a low cost production of 96-channel plastic microfluidic devices including various microfabrication technologies to demonstrate the application of microtechnical fabrication processes for high-throughput screening and DNA analysis. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-nopod de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ubt-nopod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ubt-nopod.php?la=en en
dc.subject.classification High throughput screening , Biosensor , Genanalyse de_DE
dc.subject.ddc 540 de_DE
dc.subject.other Microfluidic devices en
dc.title Microfluidic Plastic Devices for Single-use Applications in High-Throughput Screening and DNA-Analysis en
dc.type Other de_DE
dc.date.updated 2010-02-10 de_DE
utue.publikation.fachbereich Sonstige - Chemie und Pharmazie de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE
dcterms.DCMIType Text de_DE
utue.publikation.typ report de_DE
utue.opus.id 319 de_DE
utue.publikation.source http://barolo.ipc.uni-tuebingen.de/biosensor2001/ de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige